A study on the solutions of (1+1)-dimensional Mikhailov-Novikov-Wang equation

S. Demiray, U. Bayrakci
{"title":"A study on the solutions of (1+1)-dimensional Mikhailov-Novikov-Wang equation","authors":"S. Demiray, U. Bayrakci","doi":"10.53391/mmnsa.2022.021","DOIUrl":null,"url":null,"abstract":"The basic principle of this study is to obtain various solutions to the (1+1) dimensional Mikhailov-Novikov-Wang integrable equation (MNWIE). For this purpose, the generalized exponential rational function method (GERFM) is applied to this equation. Thus, several trigonometric functions, hyperbolic functions, and dark soliton solutions to the studied equation are acquired. In this way, some new solutions to the equation that have not been presented before have been obtained. In addition, 2D and 3D graphics of the acquired solutions are drawn for specific values. The obtained results and the graphic drawings of the results have been provided by using Wolfram Mathematica 12.","PeriodicalId":210715,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Numerical Simulation with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53391/mmnsa.2022.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The basic principle of this study is to obtain various solutions to the (1+1) dimensional Mikhailov-Novikov-Wang integrable equation (MNWIE). For this purpose, the generalized exponential rational function method (GERFM) is applied to this equation. Thus, several trigonometric functions, hyperbolic functions, and dark soliton solutions to the studied equation are acquired. In this way, some new solutions to the equation that have not been presented before have been obtained. In addition, 2D and 3D graphics of the acquired solutions are drawn for specific values. The obtained results and the graphic drawings of the results have been provided by using Wolfram Mathematica 12.
(1+1)维Mikhailov-Novikov-Wang方程解的研究
本研究的基本原理是获得(1+1)维Mikhailov-Novikov-Wang可积方程(MNWIE)的各种解。为此,将广义指数有理函数法(GERFM)应用于该方程。由此,得到了所研究方程的几个三角函数、双曲函数和暗孤子解。通过这种方法,得到了一些以前没有提出过的方程的新解。此外,针对具体数值绘制了获取的解的二维和三维图形。用Wolfram Mathematica 12软件对所得结果进行了计算,并给出了计算结果的图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信