Hadi Amirpour, V. V. Menon, Samira Afzal, R.-C. Prodan, C. Timmerer
{"title":"Optimizing Video Streaming for Sustainability and Quality: The Role of Preset Selection in Per-Title Encoding","authors":"Hadi Amirpour, V. V. Menon, Samira Afzal, R.-C. Prodan, C. Timmerer","doi":"10.1109/ICME55011.2023.00289","DOIUrl":null,"url":null,"abstract":"HTTP Adaptive Streaming (HAS) methods divide a video into smaller segments, encoded at multiple pre-defined bitrates to construct a bitrate ladder. Bitrate ladders are usually optimized per title over several dimensions, such as bitrate, resolution, and framerate. This paper adds a new dimension to the bitrate ladder by considering the energy consumption of the encoding process. Video encoders often have multiple pre-defined presets to balance the trade-off between encoding time, energy consumption, and compression efficiency. Faster presets disable certain coding tools defined by the codec to reduce the encoding time at the cost of reduced compression efficiency. Firstly, this paper evaluates the energy consumption and compression efficiency of different x265 presets for 500 video sequences. Secondly, optimized presets are selected for various representations in a bitrate ladder based on the results to guarantee a minimal drop in video quality while saving energy. Finally, a new per title model, which optimizes the trade-off between compression efficiency and energy consumption, is proposed. The experimental results show that decreasing the VMAF score by 0.15 and 0.39 while choosing an optimized preset results in encoding energy savings of 70% and 83%, respectively.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
HTTP Adaptive Streaming (HAS) methods divide a video into smaller segments, encoded at multiple pre-defined bitrates to construct a bitrate ladder. Bitrate ladders are usually optimized per title over several dimensions, such as bitrate, resolution, and framerate. This paper adds a new dimension to the bitrate ladder by considering the energy consumption of the encoding process. Video encoders often have multiple pre-defined presets to balance the trade-off between encoding time, energy consumption, and compression efficiency. Faster presets disable certain coding tools defined by the codec to reduce the encoding time at the cost of reduced compression efficiency. Firstly, this paper evaluates the energy consumption and compression efficiency of different x265 presets for 500 video sequences. Secondly, optimized presets are selected for various representations in a bitrate ladder based on the results to guarantee a minimal drop in video quality while saving energy. Finally, a new per title model, which optimizes the trade-off between compression efficiency and energy consumption, is proposed. The experimental results show that decreasing the VMAF score by 0.15 and 0.39 while choosing an optimized preset results in encoding energy savings of 70% and 83%, respectively.