Research on Active Magnetic Bearing Rotor System Based on Fractional PID Control

Zhiqiang Zhang, Hejin Xiong, Chaozhi He
{"title":"Research on Active Magnetic Bearing Rotor System Based on Fractional PID Control","authors":"Zhiqiang Zhang, Hejin Xiong, Chaozhi He","doi":"10.1109/ACPEE51499.2021.9436868","DOIUrl":null,"url":null,"abstract":"At present, the PID control is the most basic control method of the Active Magnetic Bearing, but the integer order PID control sometimes fails to get the reliability and stability requirements of the system. Fractional PID control is a generalization of traditional PID control and theoretically has a better control effect. In this paper, the FO-PID control method is applied to the Active Magnetic Bearing system, and the control system is studied and analyzed. The model built by Simulink compares the response performance of fractional PID and integer PID under unit step signal and the anti-interference ability under different interference. Simulation shows that fractional PID has better control effect and anti-interference ability.","PeriodicalId":127882,"journal":{"name":"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPEE51499.2021.9436868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At present, the PID control is the most basic control method of the Active Magnetic Bearing, but the integer order PID control sometimes fails to get the reliability and stability requirements of the system. Fractional PID control is a generalization of traditional PID control and theoretically has a better control effect. In this paper, the FO-PID control method is applied to the Active Magnetic Bearing system, and the control system is studied and analyzed. The model built by Simulink compares the response performance of fractional PID and integer PID under unit step signal and the anti-interference ability under different interference. Simulation shows that fractional PID has better control effect and anti-interference ability.
基于分数阶PID控制的主动磁轴承转子系统研究
目前,PID控制是主动磁轴承最基本的控制方法,但整数阶PID控制有时不能得到系统的可靠性和稳定性要求。分数阶PID控制是传统PID控制的推广,理论上具有较好的控制效果。本文将FO-PID控制方法应用于主动磁轴承系统,并对控制系统进行了研究和分析。利用Simulink建立模型,比较分数阶PID和整数阶PID在单位阶跃信号下的响应性能和不同干扰下的抗干扰能力。仿真结果表明,分数阶PID具有较好的控制效果和抗干扰能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信