A False Negative Cost Minimization Ensemble Methods for Customer Churn Analysis

Wong Keng Tuck, Chien-Le Goh, Ng Hu
{"title":"A False Negative Cost Minimization Ensemble Methods for Customer Churn Analysis","authors":"Wong Keng Tuck, Chien-Le Goh, Ng Hu","doi":"10.1145/3384544.3384551","DOIUrl":null,"url":null,"abstract":"The primary objective of this research is to develop hybrid decision tree induction methods based on the decision tree C4.5 algorithm and ensemble methods, taking into account cost-sensitivity for the purpose of minimizing either misclassification cost, false negative cost or false positive cost. This paper proposed two cost-sensitive learning methods by modifying the model weight of AdaBoost.M1 for churn analysis in the telecommunication industry. Method 1 applies the ratio of false negative cost over true negative cost to make the weight of false negative heavier than the weight of false positive. While Method 2 combines error rate weighting with false negative cost weighting in order to let examples have heavier weight values for future training in the next learning cycle. The proposed methods have been evaluated with a series of experiments to prove its ability to reduce either false negative cost or misclassification costs. Microsoft Azure Machine Learning Telco Customer Churn and IBM Watson Studio Telecommunication Customer Churn datasets, which include the cost value for each instance, are used for the experiments. The proposed Method 1 able to obtain the lowest false negative cost comparing with the original AdaBoost.M1.","PeriodicalId":200246,"journal":{"name":"Proceedings of the 2020 9th International Conference on Software and Computer Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 9th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384544.3384551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary objective of this research is to develop hybrid decision tree induction methods based on the decision tree C4.5 algorithm and ensemble methods, taking into account cost-sensitivity for the purpose of minimizing either misclassification cost, false negative cost or false positive cost. This paper proposed two cost-sensitive learning methods by modifying the model weight of AdaBoost.M1 for churn analysis in the telecommunication industry. Method 1 applies the ratio of false negative cost over true negative cost to make the weight of false negative heavier than the weight of false positive. While Method 2 combines error rate weighting with false negative cost weighting in order to let examples have heavier weight values for future training in the next learning cycle. The proposed methods have been evaluated with a series of experiments to prove its ability to reduce either false negative cost or misclassification costs. Microsoft Azure Machine Learning Telco Customer Churn and IBM Watson Studio Telecommunication Customer Churn datasets, which include the cost value for each instance, are used for the experiments. The proposed Method 1 able to obtain the lowest false negative cost comparing with the original AdaBoost.M1.
客户流失分析的假负成本最小化集成方法
本研究的主要目标是开发基于决策树C4.5算法和集成方法的混合决策树归纳方法,同时考虑成本敏感性,以最小化错误分类成本、假阴性成本或假阳性成本。本文通过修改AdaBoost的模型权值,提出了两种代价敏感学习方法。M1用于电信行业的客户流失分析。方法一采用假阴性成本与真阴性成本之比,使假阴性权重大于假阳性权重。而Method 2将错误率加权与假负代价加权相结合,让样例在下一个学习周期中有更大的权值用于未来的训练。通过一系列的实验对所提出的方法进行了评估,以证明其能够降低假阴性成本或误分类成本。微软Azure机器学习电信客户流失和IBM Watson Studio电信客户流失数据集包括每个实例的成本值,用于实验。与原始的AdaBoost.M1相比,所提出的方法1能够获得最低的假阴性代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信