{"title":"Multicast time maximization in energy constrained wireless networks","authors":"P. Floréen, P. Kaski, J. Kohonen, P. Orponen","doi":"10.1145/941079.941087","DOIUrl":null,"url":null,"abstract":"We consider the problem of maximizing the lifetime of a given multicast connection in a wireless network of energy-constrained (e.g. battery-operated) nodes, by choosing ideal transmission power levels for the nodes relaying the connection. We distinguish between two basic operating modes: In a static assignment, the power levels of the nodes are set at the beginning and remain unchanged until the nodes are depleted of energy. In a dynamic assignment, the powers can be adjusted during operation.We show that lifetime-maximizing static power assignments can be found in polynomial time, whereas for dynamic assignments, a quantized-time version of the problem is NP-hard. We then study the approximability of the quantized dynamic case and conclude that no polynomial time approximation scheme (PTAS) exists for the problem unless Ptime = NP. Finally, by considering two approximation heuristics for the dynamic case, we show experimentally that the lifetime of a dynamically maintained multicast connection can be made several times longer than what can be achieved by the best possible static assignment.","PeriodicalId":315744,"journal":{"name":"DIALM-POMC '03","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIALM-POMC '03","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/941079.941087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
We consider the problem of maximizing the lifetime of a given multicast connection in a wireless network of energy-constrained (e.g. battery-operated) nodes, by choosing ideal transmission power levels for the nodes relaying the connection. We distinguish between two basic operating modes: In a static assignment, the power levels of the nodes are set at the beginning and remain unchanged until the nodes are depleted of energy. In a dynamic assignment, the powers can be adjusted during operation.We show that lifetime-maximizing static power assignments can be found in polynomial time, whereas for dynamic assignments, a quantized-time version of the problem is NP-hard. We then study the approximability of the quantized dynamic case and conclude that no polynomial time approximation scheme (PTAS) exists for the problem unless Ptime = NP. Finally, by considering two approximation heuristics for the dynamic case, we show experimentally that the lifetime of a dynamically maintained multicast connection can be made several times longer than what can be achieved by the best possible static assignment.