Handling Data Sparseness in Gene Network Reconstruction

G. B. Bezerra, T.V. Barra, F. V. Zuben, L. Castro
{"title":"Handling Data Sparseness in Gene Network Reconstruction","authors":"G. B. Bezerra, T.V. Barra, F. V. Zuben, L. Castro","doi":"10.1109/CIBCB.2005.1594900","DOIUrl":null,"url":null,"abstract":"One of the main problems related to regulatory network reconstruction from expression data concerns the small size and low quality of the available dataset. When trying to infer a model from little information it is necessary to give much more precedence to generalization, rather than specificity, otherwise, any attempt will be fated to overfitting. In this paper we address this issue by focusing on data sparseness and noisy information, and propose a density estimation technique that achieves regularized curves when data is scarce. We first compare the proposed method with the EM algorithm for mixture models on density estimation problems. Next, we apply the method, together with Bayesian networks, on realistic simulations of static gene networks, and compare the obtained results with the standard discrete Bayesian network model. We intend to demonstrate that adopting a discrete approach is not justifiable when only a small amount of information is available.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the main problems related to regulatory network reconstruction from expression data concerns the small size and low quality of the available dataset. When trying to infer a model from little information it is necessary to give much more precedence to generalization, rather than specificity, otherwise, any attempt will be fated to overfitting. In this paper we address this issue by focusing on data sparseness and noisy information, and propose a density estimation technique that achieves regularized curves when data is scarce. We first compare the proposed method with the EM algorithm for mixture models on density estimation problems. Next, we apply the method, together with Bayesian networks, on realistic simulations of static gene networks, and compare the obtained results with the standard discrete Bayesian network model. We intend to demonstrate that adopting a discrete approach is not justifiable when only a small amount of information is available.
基因网络重构中的数据稀疏性处理
从表达数据重建调控网络的主要问题之一是可用数据集的规模小、质量低。当试图从很少的信息中推断一个模型时,有必要给泛化更多的优先权,而不是特异性,否则,任何尝试都注定会过度拟合。在本文中,我们通过关注数据稀疏性和噪声信息来解决这个问题,并提出了一种密度估计技术,该技术可以在数据稀缺时获得正则化曲线。在密度估计问题上,我们首先将该方法与混合模型的EM算法进行了比较。接下来,我们将该方法与贝叶斯网络一起应用于静态基因网络的实际模拟,并将所得结果与标准离散贝叶斯网络模型进行比较。我们打算证明,当只有少量信息可用时,采用离散方法是不合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信