New Version of Davies-Bouldin Index for Clustering Validation Based on Cylindrical Distance

Juan Carlos Rojas Thomas, M. Peñas, M. Mora
{"title":"New Version of Davies-Bouldin Index for Clustering Validation Based on Cylindrical Distance","authors":"Juan Carlos Rojas Thomas, M. Peñas, M. Mora","doi":"10.1109/SCCC.2013.29","DOIUrl":null,"url":null,"abstract":"This paper presents a new version of Davies-Bouldin index for clustering validation through the use of a new distance based on density. This new distance, called cylindrical distance, is used as a similarity measurement between the means of the clusters, in order to overcome the limitations of the Euclidean distance. The cylindrical distance takes into account the distribution of the data set, using this information to estimate the densities along line segments that connect the centroids. In this way, the index gets a more accurate measurement of separation between clusters, improving its performance.","PeriodicalId":182181,"journal":{"name":"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2013.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This paper presents a new version of Davies-Bouldin index for clustering validation through the use of a new distance based on density. This new distance, called cylindrical distance, is used as a similarity measurement between the means of the clusters, in order to overcome the limitations of the Euclidean distance. The cylindrical distance takes into account the distribution of the data set, using this information to estimate the densities along line segments that connect the centroids. In this way, the index gets a more accurate measurement of separation between clusters, improving its performance.
基于圆柱距离聚类验证的新版本Davies-Bouldin索引
本文提出了一种新的戴维斯-博尔丁指数,通过使用基于密度的新距离进行聚类验证。这种新的距离,称为圆柱距离,被用来作为簇均值之间的相似性度量,以克服欧几里得距离的局限性。圆柱距离考虑了数据集的分布,利用这些信息来估计连接质心的线段上的密度。这样,该指数可以更准确地度量聚类之间的分离,从而提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信