Mobile Robot Object Detection Method Based on Deep Learning

Guo Yuhan
{"title":"Mobile Robot Object Detection Method Based on Deep Learning","authors":"Guo Yuhan","doi":"10.58291/ijec.v2i2.118","DOIUrl":null,"url":null,"abstract":"The task of object detection is to accurately and efficiently identify and locate a large number of predefined categories of object instances from images. With the wide application of deep learning, the accuracy and efficiency of target detection have been greatly improved. However, deep learning-based target detection still faces challenges from key technologies such as improving and optimizing the performance of mainstream target detection algorithms, improving the detection accuracy of small target objects, realizing multi-class object detection and lightweight detection model. In response to the above challenges, based on extensive literature research, this paper analyses methods for lightweight detection models and improved detection accuracy from the perspective of YOLOv5s network structure. The problems to be solved in target detection and the future research direction are predicted and prospected.","PeriodicalId":388974,"journal":{"name":"International Journal of Engineering Continuity","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Continuity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58291/ijec.v2i2.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The task of object detection is to accurately and efficiently identify and locate a large number of predefined categories of object instances from images. With the wide application of deep learning, the accuracy and efficiency of target detection have been greatly improved. However, deep learning-based target detection still faces challenges from key technologies such as improving and optimizing the performance of mainstream target detection algorithms, improving the detection accuracy of small target objects, realizing multi-class object detection and lightweight detection model. In response to the above challenges, based on extensive literature research, this paper analyses methods for lightweight detection models and improved detection accuracy from the perspective of YOLOv5s network structure. The problems to be solved in target detection and the future research direction are predicted and prospected.
基于深度学习的移动机器人目标检测方法
目标检测的任务是从图像中准确、高效地识别和定位大量预定义类别的目标实例。随着深度学习的广泛应用,目标检测的精度和效率得到了极大的提高。然而,基于深度学习的目标检测仍然面临着改进和优化主流目标检测算法性能、提高小目标对象检测精度、实现多类目标检测和轻量化检测模型等关键技术的挑战。针对上述挑战,本文在大量文献研究的基础上,从YOLOv5s网络结构的角度,分析了轻量化检测模型和提高检测精度的方法。对目标检测中需要解决的问题和未来的研究方向进行了预测和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信