{"title":"Continuous enucleation of bovine oocyte by microrobot with local flow distribution control","authors":"Lin Feng, A. Ichikawa, F. Arai, M. Hagiwara","doi":"10.1109/3M-NANO.2012.6472969","DOIUrl":null,"url":null,"abstract":"We present a continuous enucleation process of bovine oocytes on a microfluidic chip to achieve the continuous cutting of the oocytes and increasing the potential viability of the enucleated oocyte. By combining microfluidic chip and micororobotics, the flow in a channel can be actively controlled and we achieved successive operations of 1) loading oocyte, 2) control cutting volume and 3) removing nucleus. The magnetically actuated microrobot can control local fluid flow by changing its position like gate valve and control fluid force distributions in a microchip which govern oocyte movement in a chip. The optimally designed microchannel for enucleation enables continuous operation and cutting bovine oocyte with smooth manner by hydrodynamic force. The new system is propose here to show advantages by the means of the continuous operation on oocytes in a short term, cutting precision and great potentiality on continuous enucleation process for clone technology.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present a continuous enucleation process of bovine oocytes on a microfluidic chip to achieve the continuous cutting of the oocytes and increasing the potential viability of the enucleated oocyte. By combining microfluidic chip and micororobotics, the flow in a channel can be actively controlled and we achieved successive operations of 1) loading oocyte, 2) control cutting volume and 3) removing nucleus. The magnetically actuated microrobot can control local fluid flow by changing its position like gate valve and control fluid force distributions in a microchip which govern oocyte movement in a chip. The optimally designed microchannel for enucleation enables continuous operation and cutting bovine oocyte with smooth manner by hydrodynamic force. The new system is propose here to show advantages by the means of the continuous operation on oocytes in a short term, cutting precision and great potentiality on continuous enucleation process for clone technology.