Automatic plagiarism detection for spoken responses in an assessment of English language proficiency

Xinhao Wang, Keelan Evanini, James V. Bruno, Matthew David Mulholland
{"title":"Automatic plagiarism detection for spoken responses in an assessment of English language proficiency","authors":"Xinhao Wang, Keelan Evanini, James V. Bruno, Matthew David Mulholland","doi":"10.1109/SLT.2016.7846254","DOIUrl":null,"url":null,"abstract":"This paper addresses the task of automatically detecting plagiarized responses in the context of a test of spoken English proficiency for non-native speakers. Text-to-text content similarity features are used jointly with speaking proficiency features extracted using an automated speech scoring system to train classifiers to distinguish between plagiarized and non-plagiarized spoken responses. A large data set drawn from an operational English proficiency assessment is used to simulate the performance of the detection system in a practical application. The best classifier on this heavily imbalanced data set resulted in an F1-score of 0.706 on the plagiarized class. These results indicate that the proposed system can potentially be used to improve the validity of both human and automated assessment of non-native spoken English.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper addresses the task of automatically detecting plagiarized responses in the context of a test of spoken English proficiency for non-native speakers. Text-to-text content similarity features are used jointly with speaking proficiency features extracted using an automated speech scoring system to train classifiers to distinguish between plagiarized and non-plagiarized spoken responses. A large data set drawn from an operational English proficiency assessment is used to simulate the performance of the detection system in a practical application. The best classifier on this heavily imbalanced data set resulted in an F1-score of 0.706 on the plagiarized class. These results indicate that the proposed system can potentially be used to improve the validity of both human and automated assessment of non-native spoken English.
英语语言能力评估中口语回答的自动抄袭检测
本文讨论了在非英语母语者英语口语水平测试中自动检测剽窃回答的任务。文本到文本内容相似性特征与使用自动语音评分系统提取的口语熟练度特征联合使用,以训练分类器区分抄袭和非抄袭的口语回答。从一个操作性英语水平评估中提取的大数据集被用来模拟检测系统在实际应用中的性能。在这个严重不平衡的数据集上,最好的分类器在抄袭班级上的f1得分为0.706。这些结果表明,所提出的系统可以潜在地用于提高非母语英语口语的人工和自动评估的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信