Solving the Interval Riccati differential equation by Wavelet operational matrix method

N. Ghadimi, M. Keshavarz
{"title":"Solving the Interval Riccati differential equation by Wavelet operational matrix method","authors":"N. Ghadimi, M. Keshavarz","doi":"10.5899/2016/JFSVA-00288","DOIUrl":null,"url":null,"abstract":"Riccati differential equation is an important equation, in many fields of engineering and applied sciences, so recently lots of methods have been proposed to solve this equation. Haar Wavelet operational matrix,is one of the effective methods to solve this equation, that is very simple and easy, compared to other orders. In this paper, we want to solve the nonlinear riccati differential equation in interval initial condition. first we simplify it by using the block pulse function to expand the Haar wavelet one. we have three cases for each interval, but now it can be solved for positive interval Haar coefficients. The results reveal that the proposed method is very effective and simple.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2016/JFSVA-00288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Riccati differential equation is an important equation, in many fields of engineering and applied sciences, so recently lots of methods have been proposed to solve this equation. Haar Wavelet operational matrix,is one of the effective methods to solve this equation, that is very simple and easy, compared to other orders. In this paper, we want to solve the nonlinear riccati differential equation in interval initial condition. first we simplify it by using the block pulse function to expand the Haar wavelet one. we have three cases for each interval, but now it can be solved for positive interval Haar coefficients. The results reveal that the proposed method is very effective and simple.
用小波变换矩阵法求解区间Riccati微分方程
里卡第微分方程是一个重要的方程,在工程和应用科学的许多领域都有应用,近年来人们提出了许多求解该方程的方法。Haar小波变换矩阵,是求解该方程的有效方法之一,与其他阶相比,它非常简单易行。本文研究区间初始条件下的非线性riccati微分方程。首先利用块脉冲函数对Haar小波函数展开,对其进行简化。每个区间有三种情况,但现在可以解出区间哈尔系数为正的情况。结果表明,该方法简单有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信