Solving Kinematics of a Parallel Manipulator Using Artificial Neural Networks

Yasmin Khattab, Iham F. Zidane, M. El-Habrouk, S. Rezeka
{"title":"Solving Kinematics of a Parallel Manipulator Using Artificial Neural Networks","authors":"Yasmin Khattab, Iham F. Zidane, M. El-Habrouk, S. Rezeka","doi":"10.1109/ICCTA54562.2021.9916234","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANNs) are known for their ability to map nonlinear relations between inputs and outputs. This paper presents ANN-based kinematic modeling of a recently developed parallel manipulator. The manipulator has 3 limbs of prismatic-universal-universal (3-PUU) structure. To avoid the computational complexity of solving the kinematics problem in real-time application, two artificial neural networks are trained to estimate the forward and inverse kinematics solutions. Simulation results show that the developed ANNs have great prediction capabilities, providing accurate kinematic solution and can then be applied in the control design of the proposed manipulator.","PeriodicalId":258950,"journal":{"name":"2021 31st International Conference on Computer Theory and Applications (ICCTA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 31st International Conference on Computer Theory and Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA54562.2021.9916234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artificial Neural Networks (ANNs) are known for their ability to map nonlinear relations between inputs and outputs. This paper presents ANN-based kinematic modeling of a recently developed parallel manipulator. The manipulator has 3 limbs of prismatic-universal-universal (3-PUU) structure. To avoid the computational complexity of solving the kinematics problem in real-time application, two artificial neural networks are trained to estimate the forward and inverse kinematics solutions. Simulation results show that the developed ANNs have great prediction capabilities, providing accurate kinematic solution and can then be applied in the control design of the proposed manipulator.
用人工神经网络求解并联机械臂的运动学
人工神经网络(ann)以其映射输入和输出之间非线性关系的能力而闻名。本文提出了一种基于人工神经网络的并联机器人运动学建模方法。机械手具有三支棱镜-通用-通用(3- puu)结构。为了避免在实时应用中求解运动学问题的计算复杂度,训练了两个人工神经网络来估计运动学正解和逆解。仿真结果表明,所开发的人工神经网络具有较强的预测能力,可提供精确的运动学解,并可用于所提出的机械手的控制设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信