Modeling and Vibration Feedback Control of Rotating Tapered Beams Incorporating Adaptive Capabilities

S. Na, L. Librescu
{"title":"Modeling and Vibration Feedback Control of Rotating Tapered Beams Incorporating Adaptive Capabilities","authors":"S. Na, L. Librescu","doi":"10.1115/imece2000-1253","DOIUrl":null,"url":null,"abstract":"\n This paper addresses the problem of the modeling and vibration control of tapered rotating blades modeled as thin-walled beams and incorporating adaptive capabilities. The blade model incorporates non-classical features such as anisotropy, transverse shear, secondary warping and includes the centrifugal and Coriolis force fields.\n For the non-adaptive system, a thorough validation and assessment of a number of nonclassical features including the taper characteristics is accomplished. The adaptive capabilities are provided by a system of piezoactuators bonded or embedded into the structure and spread over the entire span of the beam.\n Based on the converse piezoelectric effect, the piezoactuators produce a localized strain field in response to a voltage and consequently, a change of the dynamic response characteristics is induced. A combined feedback control law relating the piezoelectrically induced transversal bending moment at the beam tip with the kinematical response quantities appropriately selected is used and the beneficial effects upon the closed-loop dynamic characteristics of the blade are highlighted.","PeriodicalId":270413,"journal":{"name":"Recent Advances in Solids and Structures","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper addresses the problem of the modeling and vibration control of tapered rotating blades modeled as thin-walled beams and incorporating adaptive capabilities. The blade model incorporates non-classical features such as anisotropy, transverse shear, secondary warping and includes the centrifugal and Coriolis force fields. For the non-adaptive system, a thorough validation and assessment of a number of nonclassical features including the taper characteristics is accomplished. The adaptive capabilities are provided by a system of piezoactuators bonded or embedded into the structure and spread over the entire span of the beam. Based on the converse piezoelectric effect, the piezoactuators produce a localized strain field in response to a voltage and consequently, a change of the dynamic response characteristics is induced. A combined feedback control law relating the piezoelectrically induced transversal bending moment at the beam tip with the kinematical response quantities appropriately selected is used and the beneficial effects upon the closed-loop dynamic characteristics of the blade are highlighted.
结合自适应能力的旋转锥形梁建模与振动反馈控制
本文研究了薄壁梁型锥形旋转叶片的建模与振动控制问题。叶片模型包含各向异性、横向剪切、二次翘曲等非经典特征,并包含离心力场和科里奥利力场。对于非自适应系统,完成了包括锥度特征在内的一系列非经典特征的彻底验证和评估。自适应能力是由粘合或嵌入到结构中的压电致动器系统提供的,并分布在梁的整个跨度上。基于逆压电效应,压电致动器在电压作用下产生局部应变场,从而引起动态响应特性的变化。采用了一种将梁端压电诱导横向弯矩与适当选择的运动响应量相关联的组合反馈控制律,并强调了对叶片闭环动态特性的有益影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信