Magnitude squared design of recursive filters with the Chebyshev norm using a constrained rational Remez algorithm

I. Selesnick, M. Lang, C. Burrus
{"title":"Magnitude squared design of recursive filters with the Chebyshev norm using a constrained rational Remez algorithm","authors":"I. Selesnick, M. Lang, C. Burrus","doi":"10.1109/DSP.1994.379882","DOIUrl":null,"url":null,"abstract":"We describe a Remez type exchange algorithm for the design of stable recursive filters for which the Chebyshev norm of H(/spl omega/)-F(/spl omega/) is minimized, where H(/spl omega/) and F(/spl omega/) are the realized and desired magnitude squared frequency responses. The number of poles and zeros can be chosen arbitrarily and the zeros do not have to lie on the unit circle. The algorithm allows us to design filters with non-conventional frequency responses with arbitrary weighting functions. It also gives optimal minimum phase FIR filters and elliptic recursive filters as special cases. We discuss three main difficulties in the use of the Remez algorithm for recursive filter design and give ways to overcome them.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"142 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We describe a Remez type exchange algorithm for the design of stable recursive filters for which the Chebyshev norm of H(/spl omega/)-F(/spl omega/) is minimized, where H(/spl omega/) and F(/spl omega/) are the realized and desired magnitude squared frequency responses. The number of poles and zeros can be chosen arbitrarily and the zeros do not have to lie on the unit circle. The algorithm allows us to design filters with non-conventional frequency responses with arbitrary weighting functions. It also gives optimal minimum phase FIR filters and elliptic recursive filters as special cases. We discuss three main difficulties in the use of the Remez algorithm for recursive filter design and give ways to overcome them.<>
基于约束有理Remez算法的切比雪夫范数递归滤波器的模值平方设计
我们描述了一种Remez型交换算法,用于设计稳定递归滤波器,其中H(/spl ω /)-F(/spl ω /)的切比雪夫范数最小,其中H(/spl ω /)和F(/spl ω /)是实现的和期望的幅度平方频率响应。极点和零点的数量可以任意选择,零点不必位于单位圆上。该算法允许我们设计具有任意加权函数的非常规频率响应的滤波器。并给出了最优最小相位FIR滤波器和椭圆递归滤波器的特殊情况。我们讨论了在递归滤波器设计中使用Remez算法的三个主要困难,并给出了克服它们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信