A Data-Driven Bayesian Model for Predicting Fatigue Crack Nucleation in Polycrystalline Ni-Based Superalloys

M. Pinz, G. Weber, J. Stinville, T. Pollock, Somnath Ghosh
{"title":"A Data-Driven Bayesian Model for Predicting Fatigue Crack Nucleation in Polycrystalline Ni-Based Superalloys","authors":"M. Pinz, G. Weber, J. Stinville, T. Pollock, Somnath Ghosh","doi":"10.2139/ssrn.3878357","DOIUrl":null,"url":null,"abstract":"This paper develops a Bayesian, probabilistic crack nucleation model in the  Ni-based superalloy Ren\\'e 88DT for fatigue loading. A data-driven, machine learning approach is developed to identify the underlying mechanics driving crack nucleation. An experimental set of fatigue-loaded microstructures is characterized near crack nucleation sites using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) images to  correlate grain morphology and crystallography to the spatial location of crack nucleation sites. A concurrent multiscale model that embeds polycrystalline microstructures, created from the EBSD images, in a self-consistent homogenized  material is developed for low cycle fatigue simulations needed to create a database of state variables. The polycrystalline domain is modeled by a crystal plasticity finite element model (CPFEM), while a homogenized anisotropic plasticity model is used for the exterior domain. A Bayesian classification method is introduced to optimally select the most informative state variable predictors of crack nucleation and constructs a near-Pareto frontier of models with varying complexity. From this principal set of state variables, a simplified scalar crack nucleation indicator is formulated which encompasses all of the relevant components derived from the main discriminators. This Bayesian approach allows the micromechanical state variables responsible for causing crack nucleation events to come out naturally from existing data. The final result is a model that predicts the probability of nucleating a crack at a microstructural location, given the mechanical state of the material.","PeriodicalId":438337,"journal":{"name":"EngRN: Metals & Alloys (Topic)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Metals & Alloys (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3878357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a Bayesian, probabilistic crack nucleation model in the  Ni-based superalloy Ren\'e 88DT for fatigue loading. A data-driven, machine learning approach is developed to identify the underlying mechanics driving crack nucleation. An experimental set of fatigue-loaded microstructures is characterized near crack nucleation sites using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) images to  correlate grain morphology and crystallography to the spatial location of crack nucleation sites. A concurrent multiscale model that embeds polycrystalline microstructures, created from the EBSD images, in a self-consistent homogenized  material is developed for low cycle fatigue simulations needed to create a database of state variables. The polycrystalline domain is modeled by a crystal plasticity finite element model (CPFEM), while a homogenized anisotropic plasticity model is used for the exterior domain. A Bayesian classification method is introduced to optimally select the most informative state variable predictors of crack nucleation and constructs a near-Pareto frontier of models with varying complexity. From this principal set of state variables, a simplified scalar crack nucleation indicator is formulated which encompasses all of the relevant components derived from the main discriminators. This Bayesian approach allows the micromechanical state variables responsible for causing crack nucleation events to come out naturally from existing data. The final result is a model that predicts the probability of nucleating a crack at a microstructural location, given the mechanical state of the material.
多晶镍基高温合金疲劳裂纹形核预测的数据驱动贝叶斯模型
本文建立了镍基高温合金rene88dt疲劳载荷下的贝叶斯概率裂纹形核模型。一种数据驱动的机器学习方法被开发来识别驱动裂纹成核的潜在力学。利用扫描电子显微镜(SEM)和电子背散射衍射(EBSD)图像对疲劳载荷下的一组裂纹成核点附近的微观结构进行了表征,以将晶粒形貌和晶体学与裂纹成核点的空间位置联系起来。开发了一种并发多尺度模型,该模型将从EBSD图像中创建的多晶微结构嵌入到自一致的均质材料中,用于创建状态变量数据库所需的低周疲劳模拟。多晶区域采用晶体塑性有限元模型(CPFEM),外晶区域采用均质各向异性塑性模型。引入贝叶斯分类方法优选最具信息量的状态变量预测因子,构建了不同复杂度模型的近帕累托边界。从这一主状态变量集出发,推导出了一个简化的标量裂纹形核指标,它包含了由主鉴别器导出的所有相关分量。这种贝叶斯方法允许从现有数据中自然地得出导致裂纹成核事件的微力学状态变量。最终的结果是一个模型,该模型可以预测在给定材料的机械状态下,在微观结构位置形成裂纹的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信