{"title":"Towards High-Fidelity Face Normal Estimation","authors":"M. Wang, Chaoyue Wang, Xiaojie Guo, Jiawan Zhang","doi":"10.1145/3503161.3547959","DOIUrl":null,"url":null,"abstract":"While existing face normal estimation methods have produced promising results on small datasets, they often suffer from severe performance degradation on diverse in-the-wild face images, especially for the high-fidelity face normal estimation. Training a high-fidelity face normal estimation model with generalization capability requires a large amount of training data with face normal ground truth. Since collecting such high-fidelity database is difficult in practice, which prevents current methods from recovering face normal with fine-grained geometric details. To mitigate this issue, we propose a coarse-to-fine framework to estimate face normal from an in-the-wild image with only a coarse exemplar reference. Specifically, we first train a model using limited training data to exploit the coarse normal of a real face image. Then, we leverage the estimated coarse normal as an exemplar and devise an exemplar-based normal estimation network to explore robust mapping from the input face image to the fine-grained normal. In this manner, our method can largely alleviate the negative impact caused by lacking training data, and focus on exploring the high-fidelity normal contained in natural images. Extensive experiments and ablation studies are conducted to demonstrate the efficacy of our design, and reveal its superiority over state-of-the-art methods in terms of both training data requirement and recovery quality of fine-grained face normal. Our code is available at \\urlhttps://github.com/AutoHDR/HFFNE.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3547959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While existing face normal estimation methods have produced promising results on small datasets, they often suffer from severe performance degradation on diverse in-the-wild face images, especially for the high-fidelity face normal estimation. Training a high-fidelity face normal estimation model with generalization capability requires a large amount of training data with face normal ground truth. Since collecting such high-fidelity database is difficult in practice, which prevents current methods from recovering face normal with fine-grained geometric details. To mitigate this issue, we propose a coarse-to-fine framework to estimate face normal from an in-the-wild image with only a coarse exemplar reference. Specifically, we first train a model using limited training data to exploit the coarse normal of a real face image. Then, we leverage the estimated coarse normal as an exemplar and devise an exemplar-based normal estimation network to explore robust mapping from the input face image to the fine-grained normal. In this manner, our method can largely alleviate the negative impact caused by lacking training data, and focus on exploring the high-fidelity normal contained in natural images. Extensive experiments and ablation studies are conducted to demonstrate the efficacy of our design, and reveal its superiority over state-of-the-art methods in terms of both training data requirement and recovery quality of fine-grained face normal. Our code is available at \urlhttps://github.com/AutoHDR/HFFNE.