Improved contrastive learning with MoCo framework

Yihan Li, Qingmin Liu, Ling Zhou, Wenyi Zhao, Y. Tian, Weidong Zhang
{"title":"Improved contrastive learning with MoCo framework","authors":"Yihan Li, Qingmin Liu, Ling Zhou, Wenyi Zhao, Y. Tian, Weidong Zhang","doi":"10.1109/ICCECE58074.2023.10135455","DOIUrl":null,"url":null,"abstract":"Self-supervised learning typically suffers from lacking contrastive pairs and extracting unrepresentative vectors. To handle above mentioned challenges, this paper introduces a novel self-supervised learning framework that integrates the location-based sampling manner and a well-designed dimensionality reduction module. In the location-based sampling module, this paper embeds a multi-crop sampling paradigm into the memory bank-based framework. In the dimensionality reduction module, this paper introduces a principal component dimensionality reduction to capture the most comprehensive features. Experiments on popular datasets demonstrate the superior performance of our proposed method.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Self-supervised learning typically suffers from lacking contrastive pairs and extracting unrepresentative vectors. To handle above mentioned challenges, this paper introduces a novel self-supervised learning framework that integrates the location-based sampling manner and a well-designed dimensionality reduction module. In the location-based sampling module, this paper embeds a multi-crop sampling paradigm into the memory bank-based framework. In the dimensionality reduction module, this paper introduces a principal component dimensionality reduction to capture the most comprehensive features. Experiments on popular datasets demonstrate the superior performance of our proposed method.
使用MoCo框架改进对比学习
自监督学习通常存在缺乏对比对和提取非代表性向量的问题。为了应对上述挑战,本文引入了一种新的自监督学习框架,该框架集成了基于位置的采样方式和精心设计的降维模块。在基于位置的采样模块中,本文将多作物采样范式嵌入到基于存储库的框架中。在降维模块中,本文引入了主成分降维,以捕获最全面的特征。在常用数据集上的实验证明了该方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信