{"title":"Improved contrastive learning with MoCo framework","authors":"Yihan Li, Qingmin Liu, Ling Zhou, Wenyi Zhao, Y. Tian, Weidong Zhang","doi":"10.1109/ICCECE58074.2023.10135455","DOIUrl":null,"url":null,"abstract":"Self-supervised learning typically suffers from lacking contrastive pairs and extracting unrepresentative vectors. To handle above mentioned challenges, this paper introduces a novel self-supervised learning framework that integrates the location-based sampling manner and a well-designed dimensionality reduction module. In the location-based sampling module, this paper embeds a multi-crop sampling paradigm into the memory bank-based framework. In the dimensionality reduction module, this paper introduces a principal component dimensionality reduction to capture the most comprehensive features. Experiments on popular datasets demonstrate the superior performance of our proposed method.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Self-supervised learning typically suffers from lacking contrastive pairs and extracting unrepresentative vectors. To handle above mentioned challenges, this paper introduces a novel self-supervised learning framework that integrates the location-based sampling manner and a well-designed dimensionality reduction module. In the location-based sampling module, this paper embeds a multi-crop sampling paradigm into the memory bank-based framework. In the dimensionality reduction module, this paper introduces a principal component dimensionality reduction to capture the most comprehensive features. Experiments on popular datasets demonstrate the superior performance of our proposed method.