Modern Distributed Data-Parallel Large-Scale Pre-training Strategies For NLP models

Haoli Bai
{"title":"Modern Distributed Data-Parallel Large-Scale Pre-training Strategies For NLP models","authors":"Haoli Bai","doi":"10.1145/3546000.3546007","DOIUrl":null,"url":null,"abstract":"Distributed deep learning is becoming increasingly popular due to the expanding demand for computing resources for deep learning models with a larger amount of parameters. Different from traditional training approaches, data-parallel training allows multiple compute nodes to train large deep learning models simultaneously in order to boost the training efficiency. In this paper, we present and compare six strategies for data-parallel training using PyTorch on the language model GPT-2 with 100M parameters using a qualitative approach. These strategies are Single GPU, Single Parameter Server, Distributed Parameter Server, Horovod, Distributed Parameter Server with Apex mixed-precision strategy, and Horovod with Apex mixed-precision strategy. We also analyze the quantitative experiment results from each strategy. In the end, we draw the conclusion that the Distributed Parameter Server with Apex mixed-precision strategy has the best performance on single node training, while Horovod with Apex is the most robust approach to use when we have single or multiple nodes.","PeriodicalId":196955,"journal":{"name":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546000.3546007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Distributed deep learning is becoming increasingly popular due to the expanding demand for computing resources for deep learning models with a larger amount of parameters. Different from traditional training approaches, data-parallel training allows multiple compute nodes to train large deep learning models simultaneously in order to boost the training efficiency. In this paper, we present and compare six strategies for data-parallel training using PyTorch on the language model GPT-2 with 100M parameters using a qualitative approach. These strategies are Single GPU, Single Parameter Server, Distributed Parameter Server, Horovod, Distributed Parameter Server with Apex mixed-precision strategy, and Horovod with Apex mixed-precision strategy. We also analyze the quantitative experiment results from each strategy. In the end, we draw the conclusion that the Distributed Parameter Server with Apex mixed-precision strategy has the best performance on single node training, while Horovod with Apex is the most robust approach to use when we have single or multiple nodes.
面向NLP模型的现代分布式并行大规模预训练策略
由于具有大量参数的深度学习模型对计算资源的需求不断扩大,分布式深度学习正变得越来越流行。与传统训练方法不同,数据并行训练允许多个计算节点同时训练大型深度学习模型,以提高训练效率。在本文中,我们提出并比较了使用PyTorch在具有100M参数的语言模型GPT-2上使用定性方法进行数据并行训练的六种策略。这些策略是单GPU、单参数服务器、分布式参数服务器、Horovod、分布式参数服务器与Apex混合精度策略和Horovod与Apex混合精度策略。并对每种策略的定量实验结果进行了分析。最后,我们得出结论,在单节点训练中,带有Apex的分布式参数服务器混合精度策略具有最佳性能,而在单节点或多节点训练中,带有Apex的Horovod是最鲁棒的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信