{"title":"Optical Morphological Image Processor","authors":"G. Lohman, K. Brenner","doi":"10.1364/optcomp.1991.tub4","DOIUrl":null,"url":null,"abstract":"Images in the natural sciences often posses distinctive topologies, thus rendering order statistics better suited for image processing than more traditional linear filtering. A useful subclass of order statistics based on binary images is mathematical morphology./1/ Mathematical morphology is also well suited to an optical implementation. /2-5/ Optical mathematical morphology can be performed at a frame rate of 10-100 kHz., thus permitting real-time non-linear image processing in many applications. Our proposed optical architecture also allows for programmable parallel processing of very large images, under control of a small electronic micro-processor.","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcomp.1991.tub4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Images in the natural sciences often posses distinctive topologies, thus rendering order statistics better suited for image processing than more traditional linear filtering. A useful subclass of order statistics based on binary images is mathematical morphology./1/ Mathematical morphology is also well suited to an optical implementation. /2-5/ Optical mathematical morphology can be performed at a frame rate of 10-100 kHz., thus permitting real-time non-linear image processing in many applications. Our proposed optical architecture also allows for programmable parallel processing of very large images, under control of a small electronic micro-processor.