{"title":"Route-aware independent MPI I/O on the blue gene/Q","authors":"Preeti Malakar, V. Vishwanath","doi":"10.1145/2831244.2831251","DOIUrl":null,"url":null,"abstract":"Scalable high-performance I/O is crucial for application performance on large-scale systems. With the growing complexity of the system interconnects, it has become important to consider the impact of network contention on I/O performance because the I/O messages traverse several hops in the interconnect before reaching the I/O nodes or the file system. In this work, we present a route-aware and load-aware algorithm to modify existing bridge node assignment in the Blue Gene/Q (BG/Q) supercomputer. We reduce the network contention and reduce the write time by an average of 60% over the default independent I/O and by 20% over collective I/O on up to 8192 nodes on the Mira BG/Q system. Our algorithm routes 1.4x fewer messages through the bridge nodes which connect to the I/O nodes on the BG/Q.","PeriodicalId":166804,"journal":{"name":"International Symposium on Design and Implementation of Symbolic Computation Systems","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Design and Implementation of Symbolic Computation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2831244.2831251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Scalable high-performance I/O is crucial for application performance on large-scale systems. With the growing complexity of the system interconnects, it has become important to consider the impact of network contention on I/O performance because the I/O messages traverse several hops in the interconnect before reaching the I/O nodes or the file system. In this work, we present a route-aware and load-aware algorithm to modify existing bridge node assignment in the Blue Gene/Q (BG/Q) supercomputer. We reduce the network contention and reduce the write time by an average of 60% over the default independent I/O and by 20% over collective I/O on up to 8192 nodes on the Mira BG/Q system. Our algorithm routes 1.4x fewer messages through the bridge nodes which connect to the I/O nodes on the BG/Q.