Stability Analysis of a Remote DC Subgrid/Microgrid Connected to a Very Weak AC Grid

S. Rezaee, A. Radwan, M. Moallem, Jiacheng Wang
{"title":"Stability Analysis of a Remote DC Subgrid/Microgrid Connected to a Very Weak AC Grid","authors":"S. Rezaee, A. Radwan, M. Moallem, Jiacheng Wang","doi":"10.1109/SEGE52446.2021.9534971","DOIUrl":null,"url":null,"abstract":"Instability issues can arise due to the high penetration of remote voltage source converter (VSC)-interfaced DC microgrid (MG) to the ac weak grid (WG), in which the grid impedance is large. This is due to the dynamic interaction between the VSCs and the WG impedance. In this work, a small-signal analysis is conducted to derive the full-order linearized model of the VSC-WG interconnection. Furthermore, a participation factor analysis is presented to identify the effect of varying the grid impedance on the VSC-WG dominant modes in the inversion and rectification modes of operation. It is found that although the system is initially stable in both modes, it tends to move toward the unstable region when the grid impedance increases. In this study, the initial locations of the corresponding dominant eigenvalues are fairly similar for both modes. However, unlike previous works, it is shown that the dominant modes in the rectification mode are much more sensitive to the grid impedance variation than the inversion mode. Time-domain simulations are conducted on a 7.25 MW dc MG which is interfaced to the ac grid via a VSC system to verify the validity of small-signal analysis in both modes.","PeriodicalId":438266,"journal":{"name":"2021 IEEE 9th International Conference on Smart Energy Grid Engineering (SEGE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Smart Energy Grid Engineering (SEGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEGE52446.2021.9534971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Instability issues can arise due to the high penetration of remote voltage source converter (VSC)-interfaced DC microgrid (MG) to the ac weak grid (WG), in which the grid impedance is large. This is due to the dynamic interaction between the VSCs and the WG impedance. In this work, a small-signal analysis is conducted to derive the full-order linearized model of the VSC-WG interconnection. Furthermore, a participation factor analysis is presented to identify the effect of varying the grid impedance on the VSC-WG dominant modes in the inversion and rectification modes of operation. It is found that although the system is initially stable in both modes, it tends to move toward the unstable region when the grid impedance increases. In this study, the initial locations of the corresponding dominant eigenvalues are fairly similar for both modes. However, unlike previous works, it is shown that the dominant modes in the rectification mode are much more sensitive to the grid impedance variation than the inversion mode. Time-domain simulations are conducted on a 7.25 MW dc MG which is interfaced to the ac grid via a VSC system to verify the validity of small-signal analysis in both modes.
与极弱交流电网连接的远程直流子电网/微电网稳定性分析
由于远端电压源变换器(VSC)接口的直流微电网(MG)对电网阻抗较大的交流弱网(WG)的高渗透,会产生不稳定问题。这是由于vsc和WG阻抗之间的动态相互作用。本文通过小信号分析,推导了VSC-WG互连的全阶线性化模型。此外,通过参与因子分析,确定了在逆变和整流运行模式中,电网阻抗变化对VSC-WG主导模式的影响。研究发现,虽然系统在两种模式下都是初始稳定的,但随着栅极阻抗的增大,系统逐渐向不稳定区域移动。在本研究中,两种模态对应的优势特征值的初始位置相当相似。然而,与以往的工作不同的是,整流模式中的主导模式对栅极阻抗变化的敏感程度远高于逆变模式。对一个通过VSC系统与交流电网连接的7.25 MW直流MG进行了时域仿真,验证了两种模式下小信号分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信