Explicit or Implicit? On Feature Engineering for ML-based Variability-intensive Systems

Paul Temple, Gilles Perrouin
{"title":"Explicit or Implicit? On Feature Engineering for ML-based Variability-intensive Systems","authors":"Paul Temple, Gilles Perrouin","doi":"10.1145/3571788.3571804","DOIUrl":null,"url":null,"abstract":"Software variability engineering benefits from Machine Learning (ML) to learn e.g., variability-aware performance models, explore variants of interest and minimize their energy impact. As the number of applications of combining variability with ML grows, we would like to reflect on what is the core to the configuration process in software variability and inference in ML: feature engineering. These disciplines previously managed features explicitly, easing graceful combinations. Now, deep learning techniques derive automatically obscure but efficient features from data. Shall we give up explicit feature management in variability-intensive systems to embrace machine learning advances?","PeriodicalId":109935,"journal":{"name":"Proceedings of the 17th International Working Conference on Variability Modelling of Software-Intensive Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Working Conference on Variability Modelling of Software-Intensive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571788.3571804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Software variability engineering benefits from Machine Learning (ML) to learn e.g., variability-aware performance models, explore variants of interest and minimize their energy impact. As the number of applications of combining variability with ML grows, we would like to reflect on what is the core to the configuration process in software variability and inference in ML: feature engineering. These disciplines previously managed features explicitly, easing graceful combinations. Now, deep learning techniques derive automatically obscure but efficient features from data. Shall we give up explicit feature management in variability-intensive systems to embrace machine learning advances?
显性还是隐性?基于ml的变异性密集系统的特征工程研究
软件可变性工程受益于机器学习(ML)来学习,例如,可变性感知性能模型,探索感兴趣的变体并最大限度地减少其能源影响。随着将可变性与机器学习相结合的应用越来越多,我们想要反思的是,在机器学习中,软件可变性和推理的配置过程的核心是什么:特征工程。这些原则以前明确地管理功能,简化了优雅的组合。现在,深度学习技术自动从数据中获得模糊但有效的特征。我们是否应该在可变性密集系统中放弃明确的特征管理,以拥抱机器学习的进步?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信