Improved action point model in traffic flow based on driver's cognitive mechanism

Wuhong Wang, Wei Zhang, D. Li, K. Hirahara, K. Ikeuchi
{"title":"Improved action point model in traffic flow based on driver's cognitive mechanism","authors":"Wuhong Wang, Wei Zhang, D. Li, K. Hirahara, K. Ikeuchi","doi":"10.1109/IVS.2004.1336425","DOIUrl":null,"url":null,"abstract":"Car-following modelling in traffic flow theory has been becoming of increasing importance in traffic engineering and Intelligent Transport System(ITS), the point of concentration in this research field is how to analysis and measurement of driver cognitive behaviour. Based on qualitative description of driving behaviour with the new concept of driver's multi-typed information process and multi-ruled decision-making mechanism, this paper has analysed in more detail the AP (action point) model, and ameliorated AP model by eliminating its deficiency. The emphasis of this paper is placed on the deduction of the acceleration equations by considering that the following car is subjected in congested traffic flow. Furthermore, from the cybernetics perspective, this paper has carried out numeral simulation to car-following behaviour with deceleration and acceleration algorithms. The model validation and simulation results have shown that the improved action point car-following model can replicated car-following behaviour and be able to use to reveal the essence of traffic flow characteristics.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Car-following modelling in traffic flow theory has been becoming of increasing importance in traffic engineering and Intelligent Transport System(ITS), the point of concentration in this research field is how to analysis and measurement of driver cognitive behaviour. Based on qualitative description of driving behaviour with the new concept of driver's multi-typed information process and multi-ruled decision-making mechanism, this paper has analysed in more detail the AP (action point) model, and ameliorated AP model by eliminating its deficiency. The emphasis of this paper is placed on the deduction of the acceleration equations by considering that the following car is subjected in congested traffic flow. Furthermore, from the cybernetics perspective, this paper has carried out numeral simulation to car-following behaviour with deceleration and acceleration algorithms. The model validation and simulation results have shown that the improved action point car-following model can replicated car-following behaviour and be able to use to reveal the essence of traffic flow characteristics.
基于驾驶员认知机制的交通流行为点模型的改进
交通流理论中的车辆跟随建模在交通工程和智能交通系统中越来越重要,如何分析和测量驾驶员的认知行为是该领域的研究热点。在对驾驶行为进行定性描述的基础上,采用驾驶员多类型信息处理和多规则决策机制的新概念,对AP (action point)模型进行了较为详细的分析,并对AP模型进行了改进,消除了AP模型的不足。本文的重点是考虑后面车辆在拥挤交通流中的加速度方程的推导。此外,本文从控制论的角度,对采用减速和加速算法的车辆跟随行为进行了数值模拟。模型验证和仿真结果表明,改进的行动点车辆跟随模型能够复制车辆跟随行为,能够揭示交通流特征的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信