Euler Neural Network with Its Weight-Direct-Determination and Structure-Automatic-Determination Algorithms

Yunong Zhang, Lingfeng Li, Yiwen Yang, Gongqin Ruan
{"title":"Euler Neural Network with Its Weight-Direct-Determination and Structure-Automatic-Determination Algorithms","authors":"Yunong Zhang, Lingfeng Li, Yiwen Yang, Gongqin Ruan","doi":"10.1109/HIS.2009.278","DOIUrl":null,"url":null,"abstract":"To overcome the intrinsic weaknesses of conventional back-propagation (BP) neural networks, a novel type of feed-forward neural network is constructed in this paper, which adopts a three-layer structure but with the hidden-layer neurons activated by a group of Euler polynomials. A weights-direct-determination (WDD) method is thus able to be derived for it, which obtains the optimal weights of the neural network directly (i.e., just in one step). Furthermore, a structure-automatic-determination (SAD) algorithm is presented to determine the optimal number of hidden-layer neurons of the Euler neural network (ENN). Computer-simulations substantiate the efficacy of such a Euler neural network with its WDD and SAD algorithms.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

To overcome the intrinsic weaknesses of conventional back-propagation (BP) neural networks, a novel type of feed-forward neural network is constructed in this paper, which adopts a three-layer structure but with the hidden-layer neurons activated by a group of Euler polynomials. A weights-direct-determination (WDD) method is thus able to be derived for it, which obtains the optimal weights of the neural network directly (i.e., just in one step). Furthermore, a structure-automatic-determination (SAD) algorithm is presented to determine the optimal number of hidden-layer neurons of the Euler neural network (ENN). Computer-simulations substantiate the efficacy of such a Euler neural network with its WDD and SAD algorithms.
欧拉神经网络及其权值直接确定和结构自动确定算法
为了克服传统BP神经网络固有的缺点,本文构造了一种新型的前馈神经网络,该网络采用三层结构,隐藏层神经元由一组欧拉多项式激活。由此可以推导出一种权重直接确定(weight -direct-determination, WDD)方法,直接(即一步)得到神经网络的最优权重。此外,提出了一种结构自动确定(SAD)算法来确定欧拉神经网络(ENN)隐藏层神经元的最优数量。计算机仿真验证了该欧拉神经网络的WDD和SAD算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信