Robust optical flow estimation for underwater image

Ming Fang, H. Takauj, Shun'ichi Kaneko, H. Watanabe
{"title":"Robust optical flow estimation for underwater image","authors":"Ming Fang, H. Takauj, Shun'ichi Kaneko, H. Watanabe","doi":"10.1109/ISOT.2009.5326121","DOIUrl":null,"url":null,"abstract":"This paper describes a novel and robust method of estimating optical flow for underwater image sequences. This method can give out reliable optical flows output, even if the quality of image is very poor. In order to estimate optical flow of current templtate, first, we divide the template into some sub-templates, and then copute the similarity profiles of each sub-template. These similarity profiles can be used to extract two voting roles: positive voting role and negative voting role. The positive voting role can be used to increase correct optical flows, and the negative voting role can be used to reduce incorrect optical flows. We use two voting qualification variable (TP, TQ) to control the positive and negative voting processing, and use a SNR value to evaluate the each voting result. The estimated optical flow is reliability when SNR value converge to infinity only by useing small TP and TQ.","PeriodicalId":366216,"journal":{"name":"2009 International Symposium on Optomechatronic Technologies","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Optomechatronic Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2009.5326121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a novel and robust method of estimating optical flow for underwater image sequences. This method can give out reliable optical flows output, even if the quality of image is very poor. In order to estimate optical flow of current templtate, first, we divide the template into some sub-templates, and then copute the similarity profiles of each sub-template. These similarity profiles can be used to extract two voting roles: positive voting role and negative voting role. The positive voting role can be used to increase correct optical flows, and the negative voting role can be used to reduce incorrect optical flows. We use two voting qualification variable (TP, TQ) to control the positive and negative voting processing, and use a SNR value to evaluate the each voting result. The estimated optical flow is reliability when SNR value converge to infinity only by useing small TP and TQ.
水下图像鲁棒光流估计
提出了一种新的、鲁棒的水下图像序列光流估计方法。这种方法可以在图像质量很差的情况下输出可靠的光流。为了估计当前模板的光流,首先将模板划分为若干个子模板,然后计算每个子模板的相似度曲线。这些相似性配置文件可用于提取两个投票角色:积极投票角色和消极投票角色。正投票作用可以增加正确的光流,负投票作用可以减少错误的光流。我们使用两个投票资格变量(TP, TQ)来控制正面和负面投票处理,并使用信噪比值来评估每个投票结果。仅使用较小的TP和TQ,在信噪比趋近于无穷大时估计的光流是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信