Distributing a Metric-Space Search Index onto Processors

Mauricio Marín, Flavio Ferrarotti, V. Gil-Costa
{"title":"Distributing a Metric-Space Search Index onto Processors","authors":"Mauricio Marín, Flavio Ferrarotti, V. Gil-Costa","doi":"10.1109/ICPP.2010.51","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of distributing a metric-space search index based on compact clustering onto a set of distributed memory processors. The aim is enabling efficient similarity search in large-scale Web search engines. The index data structure is composed of a set of clusters enclosing the database objects and we propose distribution methods based on two different solution approaches. The first one makes use of specific knowledge about the work-load generated by user queries. Here the challenge is how to represent and use such a knowledge into a method capable of producing a cluster distribution leading to high performance. The second one follows a novel direction by completely disregarding user behavior to look instead at the relationships among the index clusters themselves to decide their placement onto processors. Both methods perform efficiently depending on the context and they are generic enough to be applied to different distributed index data structures for metric-space databases.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper studies the problem of distributing a metric-space search index based on compact clustering onto a set of distributed memory processors. The aim is enabling efficient similarity search in large-scale Web search engines. The index data structure is composed of a set of clusters enclosing the database objects and we propose distribution methods based on two different solution approaches. The first one makes use of specific knowledge about the work-load generated by user queries. Here the challenge is how to represent and use such a knowledge into a method capable of producing a cluster distribution leading to high performance. The second one follows a novel direction by completely disregarding user behavior to look instead at the relationships among the index clusters themselves to decide their placement onto processors. Both methods perform efficiently depending on the context and they are generic enough to be applied to different distributed index data structures for metric-space databases.
在处理器上分配度量空间搜索索引
研究了基于紧凑聚类的度量空间搜索索引分布到一组分布式存储处理器上的问题。其目的是在大型Web搜索引擎中实现高效的相似度搜索。索引数据结构由一组包含数据库对象的簇组成,我们提出了基于两种不同解决方法的分布方法。第一种方法利用有关用户查询生成的工作负载的特定知识。这里的挑战是如何将这些知识表示并使用到能够产生集群分布的方法中,从而实现高性能。第二种方法采用了一种新颖的方法,完全不考虑用户行为,而是查看索引簇本身之间的关系,以决定它们在处理器上的位置。这两种方法都能根据上下文有效地执行,而且它们足够通用,可以应用于度量空间数据库的不同分布式索引数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信