{"title":"GAMPS: compressing multi sensor data by grouping and amplitude scaling","authors":"Sorabh Gandhi, Suman Nath, S. Suri, Jie Liu","doi":"10.1145/1559845.1559926","DOIUrl":null,"url":null,"abstract":"We consider the problem of collectively approximating a set of sensor signals using the least amount of space so that any individual signal can be efficiently reconstructed within a given maximum (L∞) error ε. The problem arises naturally in applications that need to collect large amounts of data from multiple concurrent sources, such as sensors, servers and network routers, and archive them over a long period of time for offline data mining. We present GAMPS, a general framework that addresses this problem by combining several novel techniques. First, it dynamically groups multiple signals together so that signals within each group are correlated and can be maximally compressed jointly. Second, it appropriately scales the amplitudes of different signals within a group and compresses them within the maximum allowed reconstruction error bound. Our schemes are polynomial time O(α, β approximation schemes, meaning that the maximum (L∞) error is at most α ε and it uses at most β times the optimal memory. Finally, GAMPS maintains an index so that various queries can be issued directly on compressed data. Our experiments on several real-world sensor datasets show that GAMPS significantly reduces space without compromising the quality of search and query.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1559926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
We consider the problem of collectively approximating a set of sensor signals using the least amount of space so that any individual signal can be efficiently reconstructed within a given maximum (L∞) error ε. The problem arises naturally in applications that need to collect large amounts of data from multiple concurrent sources, such as sensors, servers and network routers, and archive them over a long period of time for offline data mining. We present GAMPS, a general framework that addresses this problem by combining several novel techniques. First, it dynamically groups multiple signals together so that signals within each group are correlated and can be maximally compressed jointly. Second, it appropriately scales the amplitudes of different signals within a group and compresses them within the maximum allowed reconstruction error bound. Our schemes are polynomial time O(α, β approximation schemes, meaning that the maximum (L∞) error is at most α ε and it uses at most β times the optimal memory. Finally, GAMPS maintains an index so that various queries can be issued directly on compressed data. Our experiments on several real-world sensor datasets show that GAMPS significantly reduces space without compromising the quality of search and query.