Information coding with neural ensembles for a mobile robot

D. Reyes, T. Baidyk, E. Kussul
{"title":"Information coding with neural ensembles for a mobile robot","authors":"D. Reyes, T. Baidyk, E. Kussul","doi":"10.1109/IJCNN.2011.6033307","DOIUrl":null,"url":null,"abstract":"For robot navigation (obstacle avoidance) we propose to use special neural network, because of its large information capacity for non correlated data. We prove this feature in contrast for correlated data in the robot task. This information is generated by a simulator and coded into neural ensembles. The coding method allows different parameters with their numeric values to be stored; it also provides similarity for close values and eliminates it in other case. The developed system combines the quality of the neural network as associative memory and the coding method to permit learning from some specific situations. So we prove the system introducing only the situation information and retrieving the appropriate maneuver for it.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For robot navigation (obstacle avoidance) we propose to use special neural network, because of its large information capacity for non correlated data. We prove this feature in contrast for correlated data in the robot task. This information is generated by a simulator and coded into neural ensembles. The coding method allows different parameters with their numeric values to be stored; it also provides similarity for close values and eliminates it in other case. The developed system combines the quality of the neural network as associative memory and the coding method to permit learning from some specific situations. So we prove the system introducing only the situation information and retrieving the appropriate maneuver for it.
移动机器人的神经集成信息编码
对于机器人导航(避障),我们提出使用特殊的神经网络,因为它对非相关数据的信息量很大。我们用机器人任务中的相关数据对比证明了这一特征。这些信息由模拟器生成并编码到神经系统中。编码方法允许存储不同的参数及其数值;它还为接近的值提供相似性,并在其他情况下消除相似性。开发的系统结合了神经网络作为联想记忆的特性和编码方法,允许从某些特定情况中学习。因此,我们证明了该系统只引入态势信息并为其检索合适的机动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信