Improved Bi-GRU Model for Imbalanced English Toxic Comments Dataset

Zhongguo Wang, Bao Zhang
{"title":"Improved Bi-GRU Model for Imbalanced English Toxic Comments Dataset","authors":"Zhongguo Wang, Bao Zhang","doi":"10.1145/3508230.3508234","DOIUrl":null,"url":null,"abstract":"Deep learning is widely used in the study of English toxic comment classification. However, most existing studies failed to consider data imbalance. Aiming at an imbalanced English Toxic Comments Dataset, we propose an improved Bi-gated recurrent unit (GRU) model that combines an oversampling and cost-sensitive method. We use random oversampling in the improved model to reduce the data imbalance, introduce a cost-sensitive method, and propose a new loss function for the Bi-GRU model. Experimental results show that the improved Bi-GRU model demonstrates a significantly improved classification performance in the imbalanced English Toxic Comments Dataset.","PeriodicalId":252146,"journal":{"name":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","volume":"142 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508230.3508234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep learning is widely used in the study of English toxic comment classification. However, most existing studies failed to consider data imbalance. Aiming at an imbalanced English Toxic Comments Dataset, we propose an improved Bi-gated recurrent unit (GRU) model that combines an oversampling and cost-sensitive method. We use random oversampling in the improved model to reduce the data imbalance, introduce a cost-sensitive method, and propose a new loss function for the Bi-GRU model. Experimental results show that the improved Bi-GRU model demonstrates a significantly improved classification performance in the imbalanced English Toxic Comments Dataset.
不平衡英语有毒评论数据集的改进Bi-GRU模型
深度学习被广泛应用于英语有毒评论分类的研究中。然而,现有的研究大多没有考虑数据的不平衡。针对不平衡的英语有毒评论数据集,我们提出了一种改进的双门循环单元(GRU)模型,该模型结合了过采样和成本敏感方法。我们在改进的模型中使用随机过采样来减少数据不平衡,引入成本敏感方法,并为Bi-GRU模型提出了一个新的损失函数。实验结果表明,改进的Bi-GRU模型在不平衡英语有毒评论数据集上的分类性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信