Accelerating nonlinear DC circuit simulation with reinforcement learning

Zhou Jin, Haojie Pei, Yichao Dong, Xiang Jin, Xiao Wu, Weipeng Xing, Dan Niu
{"title":"Accelerating nonlinear DC circuit simulation with reinforcement learning","authors":"Zhou Jin, Haojie Pei, Yichao Dong, Xiang Jin, Xiao Wu, Weipeng Xing, Dan Niu","doi":"10.1145/3489517.3530512","DOIUrl":null,"url":null,"abstract":"DC analysis is the foundation for nonlinear electronic circuit simulation. Pseudo transient analysis (PTA) methods have gained great success among various continuation algorithms. However, PTA tends to be computationally intensive without careful tuning of parameters and proper stepping strategies. In this paper, we harness the latest advancing in machine learning to resolve these challenges simultaneously. Particularly, an active learning is leveraged to provide a fine initial solver environment, in which a TD3-based Reinforcement Learning (RL) is implemented to accelerate the simulation on the fly. The RL agent is strengthen with dual agents, priority sampling, and cooperative learning to enhance its robustness and convergence. The proposed algorithms are implemented in an out-of-the-box SPICElike simulator, which demonstrated a significant speedup: up to 3.1X for the initial stage and 234X for the RL stage.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

DC analysis is the foundation for nonlinear electronic circuit simulation. Pseudo transient analysis (PTA) methods have gained great success among various continuation algorithms. However, PTA tends to be computationally intensive without careful tuning of parameters and proper stepping strategies. In this paper, we harness the latest advancing in machine learning to resolve these challenges simultaneously. Particularly, an active learning is leveraged to provide a fine initial solver environment, in which a TD3-based Reinforcement Learning (RL) is implemented to accelerate the simulation on the fly. The RL agent is strengthen with dual agents, priority sampling, and cooperative learning to enhance its robustness and convergence. The proposed algorithms are implemented in an out-of-the-box SPICElike simulator, which demonstrated a significant speedup: up to 3.1X for the initial stage and 234X for the RL stage.
直流分析是非线性电子电路仿真的基础。在各种延拓算法中,伪瞬态分析(PTA)方法取得了很大的成功。然而,如果没有仔细调整参数和适当的步进策略,PTA往往是计算密集型的。在本文中,我们利用机器学习的最新进展来同时解决这些挑战。特别地,利用主动学习来提供一个良好的初始求解器环境,其中实现了基于td3的强化学习(RL)来加速动态仿真。采用双代理、优先抽样和合作学习等方法增强RL智能体的鲁棒性和收敛性。所提出的算法在一个开箱即用的spice模拟器中实现,该模拟器显示出显着的加速:初始阶段高达3.1倍,RL阶段高达234X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信