{"title":"Chance-constrained Unit Commitment via the Scenario Approach","authors":"Xinbo Geng, Le Xie","doi":"10.1109/NAPS46351.2019.9000192","DOIUrl":null,"url":null,"abstract":"Keeping the balance between supply and demand is a fundamental task in power system operational planning practices. This task becomes particularly challenging due to the deepening penetration of renewable energy resources, which induces a significant amount of uncertainties. In this paper, we propose a chance-constrained Unit Commitment (c-UC) framework to tackle challenges from uncertainties of renewables. The proposed c-UC framework seeks cost-efficient scheduling of generators while ensuring operation constraints with guaranteed probability. We show that the scenario approach can be used to solve c-UC despite of the non-convexity from binary decision variables. We reveal the salient structural properties of c-UC, which could significantly reduce the sample complexity required by the scenario approach and speed up computation. Case studies are performed on a modified 118-bus system.","PeriodicalId":175719,"journal":{"name":"2019 North American Power Symposium (NAPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS46351.2019.9000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Keeping the balance between supply and demand is a fundamental task in power system operational planning practices. This task becomes particularly challenging due to the deepening penetration of renewable energy resources, which induces a significant amount of uncertainties. In this paper, we propose a chance-constrained Unit Commitment (c-UC) framework to tackle challenges from uncertainties of renewables. The proposed c-UC framework seeks cost-efficient scheduling of generators while ensuring operation constraints with guaranteed probability. We show that the scenario approach can be used to solve c-UC despite of the non-convexity from binary decision variables. We reveal the salient structural properties of c-UC, which could significantly reduce the sample complexity required by the scenario approach and speed up computation. Case studies are performed on a modified 118-bus system.