Image data mining of fruitfly gene expression patterns

Hanchuan Peng
{"title":"Image data mining of fruitfly gene expression patterns","authors":"Hanchuan Peng","doi":"10.1109/CSBW.2005.74","DOIUrl":null,"url":null,"abstract":"Understanding the spatio-temporal gene expression patterns is critical in studying genes roles and their complicated relationships. With the availability of high-resolution digital images of in situ mRNA hybridization expression pattern of Drosophila embryos collected through both the Berkeley Drosophila Transcriptional Network Project (BDTNP) and the Berkeley Drosophila Genome Project (BDGP), we will be able to answer a series of interesting questions, e.g., what are the variations of gene expression patterns, what are the patterning process of gene expression, etc. To achieve these goals at a large scale, it is extremely important to automate the image mining and informatics processes of embryogenesis expression patterns. We developed computer programs to register, compare and analyze these spatio-temporal pattern images. In this talk, I will review four projects on image mining of fruitfly embryo gene expression patterns: (a) Gaussian mixture model based embryonic expression pattern extraction and comparison, (b) Gene expression pattern clustering using novel MSTCUT and probabilistic ensemble clustering techniques, (c) Surface/volume models for 3D modeling and registration of early embryos, and (d) A manifold learning method for spatio-temporal registration of 3D gene expression patterns and reconstruction of the embryonic developmental time series.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the spatio-temporal gene expression patterns is critical in studying genes roles and their complicated relationships. With the availability of high-resolution digital images of in situ mRNA hybridization expression pattern of Drosophila embryos collected through both the Berkeley Drosophila Transcriptional Network Project (BDTNP) and the Berkeley Drosophila Genome Project (BDGP), we will be able to answer a series of interesting questions, e.g., what are the variations of gene expression patterns, what are the patterning process of gene expression, etc. To achieve these goals at a large scale, it is extremely important to automate the image mining and informatics processes of embryogenesis expression patterns. We developed computer programs to register, compare and analyze these spatio-temporal pattern images. In this talk, I will review four projects on image mining of fruitfly embryo gene expression patterns: (a) Gaussian mixture model based embryonic expression pattern extraction and comparison, (b) Gene expression pattern clustering using novel MSTCUT and probabilistic ensemble clustering techniques, (c) Surface/volume models for 3D modeling and registration of early embryos, and (d) A manifold learning method for spatio-temporal registration of 3D gene expression patterns and reconstruction of the embryonic developmental time series.
果蝇基因表达模式的图像数据挖掘
了解基因的时空表达模式对研究基因的作用及其复杂关系至关重要。通过伯克利果蝇转录网络计划(BDTNP)和伯克利果蝇基因组计划(BDGP)收集的果蝇胚胎mRNA原位杂交表达模式的高分辨率数字图像的可用性,我们将能够回答一系列有趣的问题,例如基因表达模式的变化是什么,基因表达的模式过程是什么等。为了大规模地实现这些目标,胚胎发生表达模式的图像挖掘和信息学过程的自动化是非常重要的。我们开发了计算机程序来登记、比较和分析这些时空模式图像。在这次演讲中,我将回顾四个关于果蝇胚胎基因表达模式图像挖掘的项目:(a)基于高斯混合模型的胚胎表达模式提取和比较,(b)基于新型MSTCUT和概率集成聚类技术的基因表达模式聚类,(c)用于早期胚胎三维建模和配准的表面/体积模型,以及(d)用于三维基因表达模式时空配准和胚胎发育时间序列重建的多元学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信