An Improved Composite JTE Termination Technique for Ultrahigh Voltage 4H-SiC Power Devices

R. Hu, Xiaochuan Deng, Xiaojie Xu, Xuan Li, Jun-tao Li, Zhiqiang Li, Y. Zhang, Bo Zhang
{"title":"An Improved Composite JTE Termination Technique for Ultrahigh Voltage 4H-SiC Power Devices","authors":"R. Hu, Xiaochuan Deng, Xiaojie Xu, Xuan Li, Jun-tao Li, Zhiqiang Li, Y. Zhang, Bo Zhang","doi":"10.1109/SSLChinaIFWS49075.2019.9019794","DOIUrl":null,"url":null,"abstract":"This paper presents a novel and efficient multiple-step-modulated JTE (MSM-JTE) termination technique for ultrahigh voltage (>10 kV) silicon carbide (SiC) devices, to extend the ultrahigh voltage JTE dose window and increase the breakdown voltage. MSM-JTE takes advantage of ring assisted JTE, etched JTE and space modulated JTE, to relief local electric field concentration and form a gradual decrease of effective charges overall. This is similar to lateral variation doping (VLD) technique which is widely used in silicon. A practical fabrication processes is also described. Compared with conventional TZ-JTE, MSM-JTE requires only one extra etching process and is insensitive to doping dose and energy of ion implantation. The MSM-JTE is applied to 15 kV PiN rectifier and simulated by Silvaco TCAD. The simulation result shows MSM-JTE could reach a nearly ideal maximum efficiency of 99 % and keep an efficiency of 95 % in a doping interval of 7×1012 cm−2. Tolerance to etching depth uncertainties is also high enough for process reliability and repeatability.","PeriodicalId":315846,"journal":{"name":"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS49075.2019.9019794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel and efficient multiple-step-modulated JTE (MSM-JTE) termination technique for ultrahigh voltage (>10 kV) silicon carbide (SiC) devices, to extend the ultrahigh voltage JTE dose window and increase the breakdown voltage. MSM-JTE takes advantage of ring assisted JTE, etched JTE and space modulated JTE, to relief local electric field concentration and form a gradual decrease of effective charges overall. This is similar to lateral variation doping (VLD) technique which is widely used in silicon. A practical fabrication processes is also described. Compared with conventional TZ-JTE, MSM-JTE requires only one extra etching process and is insensitive to doping dose and energy of ion implantation. The MSM-JTE is applied to 15 kV PiN rectifier and simulated by Silvaco TCAD. The simulation result shows MSM-JTE could reach a nearly ideal maximum efficiency of 99 % and keep an efficiency of 95 % in a doping interval of 7×1012 cm−2. Tolerance to etching depth uncertainties is also high enough for process reliability and repeatability.
超高压4H-SiC功率器件中改进的复合JTE端接技术
针对超高压(>10 kV)碳化硅器件,提出了一种新型高效的多阶调制JTE (MSM-JTE)端接技术,以延长超高压JTE的剂量窗,提高击穿电压。MSM-JTE利用环辅助JTE、蚀刻JTE和空间调制JTE来缓解局部电场集中,整体上形成逐渐减少的有效电荷。这类似于在硅中广泛应用的横向变化掺杂(VLD)技术。还描述了一种实用的制造工艺。与传统的TZ-JTE相比,MSM-JTE只需要额外的一个蚀刻过程,并且对掺杂剂量和离子注入能量不敏感。将MSM-JTE应用于15kv引脚整流器,并用Silvaco TCAD进行了仿真。仿真结果表明,在7×1012 cm−2的掺杂间隔内,MSM-JTE能达到近乎理想的99%的最大效率,并能保持95%的效率。对蚀刻深度不确定性的容忍度也足够高,以保证工艺的可靠性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信