A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems

F. Bréhard
{"title":"A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems","authors":"F. Bréhard","doi":"10.1145/3208976.3209000","DOIUrl":null,"url":null,"abstract":"We provide a new framework for a posteriori validation of vector-valued problems with componentwise tight error enclosures, and use it to design a symbolic-numeric Newton-like validation algorithm for Chebyshev approximate solutions of coupled systems of linear ordinary differential equations. More precisely, given a coupled differential system with polynomial coefficients over a compact interval (or continuous coefficients rigorously approximated by polynomials) and componentwise polynomial approximate solutions in Chebyshev basis, the algorithm outputs componentwise rigorous upper bounds for the approximation errors, with respect to the uniform norm over the interval under consideration. A complexity analysis shows that the number of arithmetic operations needed by this algorithm (in floating-point or interval arithmetics) is proportional to the approximation degree when the differential equation is considered fixed. Finally, we illustrate the efficiency of this fully automated validation method on an example of a coupled Airy-like system.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We provide a new framework for a posteriori validation of vector-valued problems with componentwise tight error enclosures, and use it to design a symbolic-numeric Newton-like validation algorithm for Chebyshev approximate solutions of coupled systems of linear ordinary differential equations. More precisely, given a coupled differential system with polynomial coefficients over a compact interval (or continuous coefficients rigorously approximated by polynomials) and componentwise polynomial approximate solutions in Chebyshev basis, the algorithm outputs componentwise rigorous upper bounds for the approximation errors, with respect to the uniform norm over the interval under consideration. A complexity analysis shows that the number of arithmetic operations needed by this algorithm (in floating-point or interval arithmetics) is proportional to the approximation degree when the differential equation is considered fixed. Finally, we illustrate the efficiency of this fully automated validation method on an example of a coupled Airy-like system.
线性常微分系统Chebyshev近似解的类牛顿验证方法
我们提供了一个新的框架,用于向量值问题的后验验证,并利用它设计了线性常微分方程耦合系统Chebyshev近似解的符号-数值类牛顿验证算法。更准确地说,给定一个耦合微分系统,该系统具有紧区间上的多项式系数(或由多项式严格逼近的连续系数)和切比雪夫基上的分量多项式近似解,该算法相对于所考虑的区间上的一致范数,输出近似误差的分量严格上界。复杂性分析表明,当微分方程被认为是固定的时,该算法所需的算术运算次数(在浮点或区间算术中)与近似程度成正比。最后,通过一个类airy耦合系统的实例说明了这种全自动验证方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信