{"title":"Beyond parallel programming with domain specific languages","authors":"K. Olukotun","doi":"10.1145/2555243.2557966","DOIUrl":null,"url":null,"abstract":"Today, almost all computer architectures are parallel and heterogeneous; a combination of multiple CPUs, GPUs and specialized processors. This creates a challenging problem for application developers who want to develop high performance programs without the effort required to use low-level, architecture specific parallel programming models (e.g. OpenMP for CMPs, CUDA for GPUs, MPI for clusters). Domain-specific languages (DSLs) are a promising solution to this problem because they can provide an avenue for high-level application-specific abstractions with implicit parallelism to be mapped directly to low level architecture-specific programming models; providing both high programmer productivity and high execution performance.\n In this talk I will describe an approach to building high performance DSLs, which is based on DSL embedding in a general purpose programming language, metaprogramming and a DSL infrastructure called Delite. I will describe how we transform DSL programs into efficient first-order low-level code using domain specific optimization, parallelism and locality optimization with parallel patterns, and architecture-specific code generation. All optimizations and transformations are implemented in Delite: an extensible DSL compiler infrastucture that significantly reduces the effort required to develop new DSLs. Delite DSLs for machine learning, data querying, graph analysis, and scientific computing all achieve performance competitive with manually parallelized C++ code.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2555243.2557966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Today, almost all computer architectures are parallel and heterogeneous; a combination of multiple CPUs, GPUs and specialized processors. This creates a challenging problem for application developers who want to develop high performance programs without the effort required to use low-level, architecture specific parallel programming models (e.g. OpenMP for CMPs, CUDA for GPUs, MPI for clusters). Domain-specific languages (DSLs) are a promising solution to this problem because they can provide an avenue for high-level application-specific abstractions with implicit parallelism to be mapped directly to low level architecture-specific programming models; providing both high programmer productivity and high execution performance.
In this talk I will describe an approach to building high performance DSLs, which is based on DSL embedding in a general purpose programming language, metaprogramming and a DSL infrastructure called Delite. I will describe how we transform DSL programs into efficient first-order low-level code using domain specific optimization, parallelism and locality optimization with parallel patterns, and architecture-specific code generation. All optimizations and transformations are implemented in Delite: an extensible DSL compiler infrastucture that significantly reduces the effort required to develop new DSLs. Delite DSLs for machine learning, data querying, graph analysis, and scientific computing all achieve performance competitive with manually parallelized C++ code.