Hybrid Position-Residues Number System

Karim Bigou, A. Tisserand
{"title":"Hybrid Position-Residues Number System","authors":"Karim Bigou, A. Tisserand","doi":"10.1109/ARITH.2016.15","DOIUrl":null,"url":null,"abstract":"We propose an hybrid representation of large integers, or prime field elements, combining both positional and residue number systems (RNS). Our hybrid position-residues (HPR) number system mixes a high-radix positional representation and digits represented in RNS. RNS offers an important source of parallelism for addition, subtraction and multiplication operations. But, due to its non-positional property, it makes comparisons and modular reductions more costly than in a positional number system. HPR offers various trade-offs between internal parallelism and the efficiency of operations requiring position information. Our current application domain is asymmetric cryptography where HPR significantly reduces the cost of some modular operations compared to state-of-the-art RNS solutions.","PeriodicalId":145448,"journal":{"name":"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2016.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We propose an hybrid representation of large integers, or prime field elements, combining both positional and residue number systems (RNS). Our hybrid position-residues (HPR) number system mixes a high-radix positional representation and digits represented in RNS. RNS offers an important source of parallelism for addition, subtraction and multiplication operations. But, due to its non-positional property, it makes comparisons and modular reductions more costly than in a positional number system. HPR offers various trade-offs between internal parallelism and the efficiency of operations requiring position information. Our current application domain is asymmetric cryptography where HPR significantly reduces the cost of some modular operations compared to state-of-the-art RNS solutions.
混合位置-残数系统
我们提出了一种结合位置数系统和剩余数系统(RNS)的大整数或素数域元的混合表示。我们的混合位置-残数(HPR)数字系统混合了高基数位置表示和RNS表示的数字。RNS为加法、减法和乘法运算提供了重要的并行性来源。但是,由于它的非位置性质,它使得比较和模约化比在位置数系统中更昂贵。HPR在内部并行性和需要位置信息的操作效率之间提供了各种权衡。我们目前的应用领域是非对称加密,与最先进的RNS解决方案相比,HPR显著降低了一些模块化操作的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信