Nonlinear coupled TE-TM waves in Goubau line

E. Smolkin, Y. Shestopalov
{"title":"Nonlinear coupled TE-TM waves in Goubau line","authors":"E. Smolkin, Y. Shestopalov","doi":"10.1109/ICEAA.2016.7731397","DOIUrl":null,"url":null,"abstract":"Nonlinear coupled electromagnetic TE-TM wave propagation in the Goubau line (a conducting cylinder covered by a concentric dielectric layer) filled with nonlinear inhomogeneous medium is considered. Nonlinearity inside the GL is described by the Kerr law. The physical problem is reduced to a nonlinear two-parameter eigenvalue problem for a system of (nonlinear) ordinary differential equations. For the numerical solution, a method based on solving an auxiliary Cauchy problem (the shooting method) is proposed. The coupled TE-TM waves propagating in GL are determined numerically. Whether these mathematically predicted propagation regime really exist is a hypothesis that can be proved or disproved in an experiment.","PeriodicalId":434972,"journal":{"name":"2016 International Conference on Electromagnetics in Advanced Applications (ICEAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Electromagnetics in Advanced Applications (ICEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2016.7731397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear coupled electromagnetic TE-TM wave propagation in the Goubau line (a conducting cylinder covered by a concentric dielectric layer) filled with nonlinear inhomogeneous medium is considered. Nonlinearity inside the GL is described by the Kerr law. The physical problem is reduced to a nonlinear two-parameter eigenvalue problem for a system of (nonlinear) ordinary differential equations. For the numerical solution, a method based on solving an auxiliary Cauchy problem (the shooting method) is proposed. The coupled TE-TM waves propagating in GL are determined numerically. Whether these mathematically predicted propagation regime really exist is a hypothesis that can be proved or disproved in an experiment.
沟堡线非线性耦合TE-TM波
研究了非线性耦合电磁TE-TM波在填充非线性非均匀介质的沟包线(同心介质层覆盖的导电圆柱体)中的传播。克尔定律描述了GL内部的非线性。将物理问题简化为一个(非线性)常微分方程组的非线性双参数特征值问题。对于数值解,提出了一种基于求解辅助柯西问题的方法(射击法)。对在GL中传播的耦合TE-TM波进行了数值计算。这些数学预测的传播机制是否真的存在是一个假设,可以在实验中证明或推翻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信