Similarity-based evolution control for fitness estimation in particle swarm optimization

Chaoli Sun, J. Zeng, Jeng-Shyang Pan, Yaochu Jin
{"title":"Similarity-based evolution control for fitness estimation in particle swarm optimization","authors":"Chaoli Sun, J. Zeng, Jeng-Shyang Pan, Yaochu Jin","doi":"10.1109/CIDUE.2013.6595765","DOIUrl":null,"url":null,"abstract":"Evolution control in the surrogate-assisted evolutionary and other meta-heuristic optimization algorithms is essential for their success in efficiently achieving the global optimum. In order to further reduce the number of fitness evaluations, a similarity-based evolution control method is introduced into the fitness estimation strategy for particle swarm optimization (FESPSO) [1]. In the proposed method, the fitness of a particle is either estimated or evaluated, depending on its similarity to the particle whose fitness is known. The performance of the proposed algorithm is examined on eight benchmark problems, and the simulation results show that the proposed algorithm is highly competitive on reducing the number of required fitness evaluations using the computationally expensive fitness function.","PeriodicalId":133590,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDUE.2013.6595765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Evolution control in the surrogate-assisted evolutionary and other meta-heuristic optimization algorithms is essential for their success in efficiently achieving the global optimum. In order to further reduce the number of fitness evaluations, a similarity-based evolution control method is introduced into the fitness estimation strategy for particle swarm optimization (FESPSO) [1]. In the proposed method, the fitness of a particle is either estimated or evaluated, depending on its similarity to the particle whose fitness is known. The performance of the proposed algorithm is examined on eight benchmark problems, and the simulation results show that the proposed algorithm is highly competitive on reducing the number of required fitness evaluations using the computationally expensive fitness function.
基于相似性的粒子群优化适应度估计进化控制
在代理辅助进化算法和其他启发式优化算法中,进化控制是有效实现全局最优的关键。为了进一步减少适应度评估的次数,在粒子群优化(FESPSO)适应度估计策略中引入了基于相似性的进化控制方法[1]。在提出的方法中,根据粒子与已知适应度的粒子的相似度来估计或评估粒子的适应度。在8个基准问题上测试了该算法的性能,仿真结果表明,该算法在使用计算代价昂贵的适应度函数减少所需适应度评估次数方面具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信