A High-resolution Parameter Extraction Algorithm for Multiple Clusters Channels

Zihang Cheng, Jorge Gómez-Ponce, Naveed A. Abbasi, A. Molisch
{"title":"A High-resolution Parameter Extraction Algorithm for Multiple Clusters Channels","authors":"Zihang Cheng, Jorge Gómez-Ponce, Naveed A. Abbasi, A. Molisch","doi":"10.1109/spawc51304.2022.9834031","DOIUrl":null,"url":null,"abstract":"Multi-path components (MPCs) in wireless channels generally occur in clusters, i.e., groups of MPCs that have similar delay/angle characteristics. However, when those clusters are widely separated and have significantly different power, high-resolution parameter extraction (HRPE) algorithms based on serial interference cancellation, such as CLEAN, can miss some of the weaker clusters because they concentrate the path search in the strongest cluster. This effect can occur particularly in the presence of calibration error and/or diffuse scattering. To solve this problem, we propose a heuristic modification, Regional CLEAN (R-CLEAN) that employs cluster identification in the Fourier domain and limits the number of MPCs per cluster. We first demonstrate the effect, and the effectiveness of our proposed algorithm, on synthetic channels with calibration error or diffuse scattering. We then demonstrate it with a THz Multiple-Input-Multiple-Output (MIMO) measurement at 145 - 146 GHz. The proposed optimization and algorithm can thus be an essential step towards evaluating channels with multiple clusters.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9834031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-path components (MPCs) in wireless channels generally occur in clusters, i.e., groups of MPCs that have similar delay/angle characteristics. However, when those clusters are widely separated and have significantly different power, high-resolution parameter extraction (HRPE) algorithms based on serial interference cancellation, such as CLEAN, can miss some of the weaker clusters because they concentrate the path search in the strongest cluster. This effect can occur particularly in the presence of calibration error and/or diffuse scattering. To solve this problem, we propose a heuristic modification, Regional CLEAN (R-CLEAN) that employs cluster identification in the Fourier domain and limits the number of MPCs per cluster. We first demonstrate the effect, and the effectiveness of our proposed algorithm, on synthetic channels with calibration error or diffuse scattering. We then demonstrate it with a THz Multiple-Input-Multiple-Output (MIMO) measurement at 145 - 146 GHz. The proposed optimization and algorithm can thus be an essential step towards evaluating channels with multiple clusters.
多聚类信道的高分辨率参数提取算法
无线信道中的多路径组件(mpc)通常出现在集群中,即具有相似延迟/角度特性的mpc组。然而,当这些聚类距离较远且功率差异较大时,基于串行干扰抵消的高分辨率参数提取(HRPE)算法(如CLEAN)由于将路径搜索集中在最强聚类上,可能会遗漏一些较弱的聚类。这种效应在存在校准误差和/或漫射散射时尤其可能发生。为了解决这个问题,我们提出了一种启发式修改,区域清洁(R-CLEAN),它在傅里叶域中使用聚类识别并限制每个聚类的mpc数量。我们首先证明了该算法在具有校准误差或漫射散射的合成信道上的效果和有效性。然后,我们用145 - 146 GHz的太赫兹多输入多输出(MIMO)测量来证明它。因此,所提出的优化和算法可以成为评估具有多个集群的通道的重要步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信