Wesam Taha, Andri Haryono, Mohammed Saif ur Rahman, M. Abou-Khousa
{"title":"Microwave Velocimeter Based on Cross-Correlation for Dual-Phase Flows","authors":"Wesam Taha, Andri Haryono, Mohammed Saif ur Rahman, M. Abou-Khousa","doi":"10.1109/RFM.2018.8846476","DOIUrl":null,"url":null,"abstract":"Accurate velocity measurement of solid particulates in multi-phase flows is critical for many industrial processes. This paper presents a non-intrusive microwave velocimeter for solid particulates in gas/solid flows. The proposed velocimeter is founded upon the cross-correlation principle while operating at 24 GHz. By having two sensors 5 cm apart, the velocity of the particulates is deduced from the relative delay in the reflected waves received by both sensors. The deployed sensor is a hermetically sealed circular waveguide with a custom-made TEM-to-TE11 mode transition. The proposed system is tested experimentally on a 1 inch PVC process pipe. The measurements drawn from the proposed system are benchmarked against a high-speed camera measurements acquired downstream of the microwave velocimeter. Experimental results demonstrate a promising performance that can be further enhanced for real-time velocity measurement in industrial processes.","PeriodicalId":111726,"journal":{"name":"2018 IEEE International RF and Microwave Conference (RFM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International RF and Microwave Conference (RFM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM.2018.8846476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Accurate velocity measurement of solid particulates in multi-phase flows is critical for many industrial processes. This paper presents a non-intrusive microwave velocimeter for solid particulates in gas/solid flows. The proposed velocimeter is founded upon the cross-correlation principle while operating at 24 GHz. By having two sensors 5 cm apart, the velocity of the particulates is deduced from the relative delay in the reflected waves received by both sensors. The deployed sensor is a hermetically sealed circular waveguide with a custom-made TEM-to-TE11 mode transition. The proposed system is tested experimentally on a 1 inch PVC process pipe. The measurements drawn from the proposed system are benchmarked against a high-speed camera measurements acquired downstream of the microwave velocimeter. Experimental results demonstrate a promising performance that can be further enhanced for real-time velocity measurement in industrial processes.