Analysis of Sparse Matrix-Vector Multiplication Using Iterative Method in CUDA

R. Hassani, A. Fazely, Riaz-Ul-Ahsan Choudhury, P. Luksch
{"title":"Analysis of Sparse Matrix-Vector Multiplication Using Iterative Method in CUDA","authors":"R. Hassani, A. Fazely, Riaz-Ul-Ahsan Choudhury, P. Luksch","doi":"10.1109/NAS.2013.41","DOIUrl":null,"url":null,"abstract":"Scaling up the sparse matrix-vector multiplication has been at the heart of numerous studies in both academia and industry. The massive parallelism of graphics processing units offers tremendous performance in many high-performance computing applications. In this work, we discuss performance analysis for parallel implementation of sparse matrix-vector multiplication using the conjugate gradient algorithm that are efficiently implemented on the NVIDIA CUDA architecture to exploit the massive compute power of today's GPUs. The results show that in comparison to the parallel CPU implementations, the parallel version of the conjugate gradient algorithm on GPU is in average 30 times faster depending on computational kernels.","PeriodicalId":213334,"journal":{"name":"2013 IEEE Eighth International Conference on Networking, Architecture and Storage","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Eighth International Conference on Networking, Architecture and Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAS.2013.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Scaling up the sparse matrix-vector multiplication has been at the heart of numerous studies in both academia and industry. The massive parallelism of graphics processing units offers tremendous performance in many high-performance computing applications. In this work, we discuss performance analysis for parallel implementation of sparse matrix-vector multiplication using the conjugate gradient algorithm that are efficiently implemented on the NVIDIA CUDA architecture to exploit the massive compute power of today's GPUs. The results show that in comparison to the parallel CPU implementations, the parallel version of the conjugate gradient algorithm on GPU is in average 30 times faster depending on computational kernels.
基于迭代法的CUDA稀疏矩阵向量乘法分析
放大稀疏矩阵-向量乘法一直是学术界和工业界众多研究的核心。图形处理单元的大规模并行性为许多高性能计算应用程序提供了巨大的性能。在这项工作中,我们讨论了使用共轭梯度算法并行实现稀疏矩阵向量乘法的性能分析,该算法在NVIDIA CUDA架构上有效实现,以利用当今gpu的巨大计算能力。结果表明,与CPU并行实现相比,GPU上的共轭梯度算法的并行版本根据计算内核的不同平均快30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信