Iterated extended Kalman smoothing with expectation-propagation

A. Ypma, T. Heskes
{"title":"Iterated extended Kalman smoothing with expectation-propagation","authors":"A. Ypma, T. Heskes","doi":"10.1109/NNSP.2003.1318021","DOIUrl":null,"url":null,"abstract":"We formulate extended Kalman smoothing in an expectation-propagation (EP) framework. The approximation involved (a local linearization) can be looked upon as a 'collapse' of a non-Gaussian belief state onto a Gaussian form. This formulation allows us to come up with better approximations to the belief states, since we can iterate the algorithm until no further refinement of the beliefs is obtained. Compared to the standard extended Kalman smoother, we linearize around the mode of the actual two-slice belief state instead of the predicted mean of the one-slice belief. In initial experiments with a one-dimensional nonlinear dynamical system we found that our method improves over the extended Kalman filter and performs comparable to the unscented Kalman filter, whereas only second-order approximations are being made. The EP-formulation in principle allows for incorporation of higher-order approximations, possibly leading to further improvements.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We formulate extended Kalman smoothing in an expectation-propagation (EP) framework. The approximation involved (a local linearization) can be looked upon as a 'collapse' of a non-Gaussian belief state onto a Gaussian form. This formulation allows us to come up with better approximations to the belief states, since we can iterate the algorithm until no further refinement of the beliefs is obtained. Compared to the standard extended Kalman smoother, we linearize around the mode of the actual two-slice belief state instead of the predicted mean of the one-slice belief. In initial experiments with a one-dimensional nonlinear dynamical system we found that our method improves over the extended Kalman filter and performs comparable to the unscented Kalman filter, whereas only second-order approximations are being made. The EP-formulation in principle allows for incorporation of higher-order approximations, possibly leading to further improvements.
迭代扩展卡尔曼平滑与期望传播
我们在期望传播(EP)框架内对扩展卡尔曼平滑法进行了阐述。所涉及的近似(局部线性化)可视为将非高斯信念状态 "折叠 "为高斯形式。由于我们可以对算法进行迭代,直到不再对信念进行细化,因此这种表述方式能让我们得出更好的信念状态近似值。与标准的扩展卡尔曼平滑器相比,我们围绕实际两片信念状态的模式进行线性化,而不是单片信念的预测平均值。在对一维非线性动态系统的初步实验中,我们发现我们的方法比扩展卡尔曼滤波法有了改进,其性能可与无特征卡尔曼滤波法媲美,而我们只做了二阶近似。EP 公式原则上允许纳入更高阶的近似值,从而可能带来进一步的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信