Biometric analysis for the recognition of spider species according to their webs

David Batista-Plaza, C. Travieso-González, M. Dutta, Anushikha Singh
{"title":"Biometric analysis for the recognition of spider species according to their webs","authors":"David Batista-Plaza, C. Travieso-González, M. Dutta, Anushikha Singh","doi":"10.1109/IC3.2017.8284286","DOIUrl":null,"url":null,"abstract":"This work presents a biometric approach for spider identification based on transform domain and Support Vector Machines as classifier. The dataset is composed by 185 images of spider web. The goal of this work is to use the structure of spider web for identifying the kind of spider. The experiments were done using two different of segmentation blocks and the analysis of the whole and center of the spider web. The best accuracy is reached after to run the different combinations.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a biometric approach for spider identification based on transform domain and Support Vector Machines as classifier. The dataset is composed by 185 images of spider web. The goal of this work is to use the structure of spider web for identifying the kind of spider. The experiments were done using two different of segmentation blocks and the analysis of the whole and center of the spider web. The best accuracy is reached after to run the different combinations.
根据蜘蛛网识别蜘蛛种类的生物特征分析
本文提出了一种基于变换域和支持向量机作为分类器的蜘蛛生物识别方法。该数据集由185张蜘蛛网图像组成。这项工作的目的是利用蜘蛛网的结构来识别蜘蛛的种类。实验采用了两种不同的分割块,对蜘蛛网的整体和中心进行了分析。经过不同组合的运行,达到了最佳的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信