Positioning accuracy improvement of a vision-based optical fiber alignment stage powered by a Piezo-Actuator

Chun-Ming Wen, M. Cheng
{"title":"Positioning accuracy improvement of a vision-based optical fiber alignment stage powered by a Piezo-Actuator","authors":"Chun-Ming Wen, M. Cheng","doi":"10.1109/ROSE.2008.4669183","DOIUrl":null,"url":null,"abstract":"Optical fiber communication has become mainstream in wired communication due to its low attenuation, low cost, and high bandwidth. However, optical fiber is light and thin, which makes the coupling procedure between fibers and optoelectronic components very complex and difficult. To maintain high transmission quality, it is imperative to develop a high-precision alignment technique for optical fiber fabrication. In this paper, a vision-based optical fiber alignment stage powered by a piezo-actuator (PEA) is proposed. The tracking performance of PEA is limited due to its inherent hysteretic nonlinearity and time varying parameters. In order to cope with this problem, a feedforward compensator based on a cerebellar model articulation controller (CMAC) combined with a PI feedback controller is developed to eliminate the effects of hysteresis. Multi-rate control is used to deal with the vision latency problem. Experimental results show that the proposed approach shows satisfactory performance.","PeriodicalId":331909,"journal":{"name":"2008 International Workshop on Robotic and Sensors Environments","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Workshop on Robotic and Sensors Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2008.4669183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Optical fiber communication has become mainstream in wired communication due to its low attenuation, low cost, and high bandwidth. However, optical fiber is light and thin, which makes the coupling procedure between fibers and optoelectronic components very complex and difficult. To maintain high transmission quality, it is imperative to develop a high-precision alignment technique for optical fiber fabrication. In this paper, a vision-based optical fiber alignment stage powered by a piezo-actuator (PEA) is proposed. The tracking performance of PEA is limited due to its inherent hysteretic nonlinearity and time varying parameters. In order to cope with this problem, a feedforward compensator based on a cerebellar model articulation controller (CMAC) combined with a PI feedback controller is developed to eliminate the effects of hysteresis. Multi-rate control is used to deal with the vision latency problem. Experimental results show that the proposed approach shows satisfactory performance.
压电致动器驱动的基于视觉的光纤对准台定位精度的提高
光纤通信以其低衰减、低成本、高带宽等优点成为有线通信的主流。然而,光纤又轻又细,这使得光纤与光电元件之间的耦合过程非常复杂和困难。为了保证高传输质量,开发高精度的光纤对准技术势在必行。提出了一种由压电致动器(PEA)驱动的基于视觉的光纤对准台。由于其固有的滞后非线性和参数的时变,限制了PEA的跟踪性能。为了解决这一问题,提出了一种基于小脑模型关节控制器(CMAC)与PI反馈控制器相结合的前馈补偿器,以消除滞后的影响。采用多速率控制来解决视觉延迟问题。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信