{"title":"The Quest for Optimal Sorting Networks: Efficient Generation of Two-Layer Prefixes","authors":"M. Codish, L. Cruz-Filipe, Peter Schneider-Kamp","doi":"10.1109/SYNASC.2014.55","DOIUrl":null,"url":null,"abstract":"Previous work identifying depth-optimal n-channel sorting networks for 9 ≤ n ≤ 16 is based on exploiting symmetries of the first two layers. However, the naive generate-and-test approach typically applied does not scale. This paper revisits the problem of generating two-layer prefixes modulo symmetries. An improved notion of symmetry is provided and a novel technique based on regular languages and graph isomorphism is shown to generate the set of non-symmetric representations. An empirical evaluation demonstrates that the new method outperforms the generate-and-test approach by orders of magnitude and easily scales until n = 40.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Previous work identifying depth-optimal n-channel sorting networks for 9 ≤ n ≤ 16 is based on exploiting symmetries of the first two layers. However, the naive generate-and-test approach typically applied does not scale. This paper revisits the problem of generating two-layer prefixes modulo symmetries. An improved notion of symmetry is provided and a novel technique based on regular languages and graph isomorphism is shown to generate the set of non-symmetric representations. An empirical evaluation demonstrates that the new method outperforms the generate-and-test approach by orders of magnitude and easily scales until n = 40.