THz control of magnetism with metamaterials (Conference Presentation)

S. Bonetti
{"title":"THz control of magnetism with metamaterials (Conference Presentation)","authors":"S. Bonetti","doi":"10.1117/12.2318098","DOIUrl":null,"url":null,"abstract":"Understanding how spins move at pico- and femtosecond time scales is the focus of much of contemporary research in magnetism. I will go through some basic and more advanced concepts in the exciting emerging field of terahertz (THz) magnetism, where electromagnetic radiation in the 0.1-10 THz range, the so-called THz gap, is used to probe or to control spin dynamics at these time scales.\n\nI will give an overview of the current research in THz magnetism. As illustrating examples, I will briefly discuss how low-intensity THz radiation can be used to probe the fundamentals of spin- dependent transport in the linear regime [1]. I will then describe how intense THz fields can be used to drive coherent and incoherent ultrafast spin dynamics in nonlinear regimes, both with broadband [2] and narrowband radiation [3].\n\nFinally, I will show some recent implementation of metamaterials [4] aimed at selectively enhancing the terahertz magnetic field in the near-field [5]. I will also illustrate the design of an anti-reflection coating that allows for table-top, femtosecond pump-probe experiments in generic nanostructures surrounded by highly reflective metamaterials [6].\n\n[1] Z. Jin et al., Nature Physics 11, 761 (2015)\n[2] S. Bonetti et al, Physical Review Letters 117, 087205 (2016)\n[3] Z. Wang et al., Selective THz control of magnetic order: new opportunities from superradiant undulator sources, Journal of Physics D: Applied Physics, in press (2018)\n[4] Hou-Tong Chen et al., Terahertz Science and Technology 1, 42 (2008)\n[5] D. Polley, et al. Journal of Physics D: Applied Physics 51, 084001 (2018)\n[6] M. Pancaldi et al. Optics Letters 26, 2917 (2018)","PeriodicalId":247740,"journal":{"name":"Terahertz Emitters, Receivers, and Applications IX","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terahertz Emitters, Receivers, and Applications IX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2318098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how spins move at pico- and femtosecond time scales is the focus of much of contemporary research in magnetism. I will go through some basic and more advanced concepts in the exciting emerging field of terahertz (THz) magnetism, where electromagnetic radiation in the 0.1-10 THz range, the so-called THz gap, is used to probe or to control spin dynamics at these time scales. I will give an overview of the current research in THz magnetism. As illustrating examples, I will briefly discuss how low-intensity THz radiation can be used to probe the fundamentals of spin- dependent transport in the linear regime [1]. I will then describe how intense THz fields can be used to drive coherent and incoherent ultrafast spin dynamics in nonlinear regimes, both with broadband [2] and narrowband radiation [3]. Finally, I will show some recent implementation of metamaterials [4] aimed at selectively enhancing the terahertz magnetic field in the near-field [5]. I will also illustrate the design of an anti-reflection coating that allows for table-top, femtosecond pump-probe experiments in generic nanostructures surrounded by highly reflective metamaterials [6]. [1] Z. Jin et al., Nature Physics 11, 761 (2015) [2] S. Bonetti et al, Physical Review Letters 117, 087205 (2016) [3] Z. Wang et al., Selective THz control of magnetic order: new opportunities from superradiant undulator sources, Journal of Physics D: Applied Physics, in press (2018) [4] Hou-Tong Chen et al., Terahertz Science and Technology 1, 42 (2008) [5] D. Polley, et al. Journal of Physics D: Applied Physics 51, 084001 (2018) [6] M. Pancaldi et al. Optics Letters 26, 2917 (2018)
用超材料控制太赫兹磁场(会议报告)
了解自旋如何在皮秒和飞秒时间尺度上运动是当代磁学研究的重点。我将通过一些基本的和更先进的概念,在太赫兹(THz)磁的令人兴奋的新兴领域,在0.1-10太赫兹范围内的电磁辐射,所谓的太赫兹间隙,被用来探测或控制这些时间尺度上的自旋动力学。本文将对太赫兹磁学的研究现状作一综述。作为举例说明,我将简要讨论如何使用低强度太赫兹辐射来探测线性体系[1]中自旋相关输运的基本原理。然后,我将描述如何使用强太赫兹场来驱动非线性体制下的相干和非相干超快自旋动力学,包括宽带[2]和窄带辐射[3]。最后,我将展示一些最近实现的超材料[4],旨在选择性地增强近场[5]中的太赫兹磁场。我还将说明一种抗反射涂层的设计,它允许在高反射超材料[6]. b[1]包围的普通纳米结构中进行桌面飞秒泵浦探针实验[2] S. Bonetti等,物理评论快报117,087205(2016)[3]王忠等,超辐射波动源对磁序的选择性太赫兹控制:新机遇,物理学报D:应用物理,in press(2018)[5]陈厚桐等,太赫兹科学与技术1,42 (2008)[5]D. Polley等。[4]张建军,张建军等。物理学报D:应用物理学报,51 (4):2023 - 2023 (2018)][j]。光学学报,26,29 (2018)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信