A Multi-task based Bilateral-Branch Network for Imbalanced Citation Intent Classification

Tianxiang Hu, Jiyi Li, Fumiyo Fukumoto, Renjie Zhou
{"title":"A Multi-task based Bilateral-Branch Network for Imbalanced Citation Intent Classification","authors":"Tianxiang Hu, Jiyi Li, Fumiyo Fukumoto, Renjie Zhou","doi":"10.1109/imcom53663.2022.9721746","DOIUrl":null,"url":null,"abstract":"Identifying the purpose of citations plays an important role in evaluating the impact of the literature. There is a data imbalanced problem on different types of citation intents which harms the performance of the classification model. To alleviate this problem, We adapt the bilateral-branch network proposed in the computer vision domain to our topic in the natural language processing domain by constructing shared and non-shared encoder layers using pre-trained language model and word attention layer respectively. In addition, to learn rich representations by leveraging the auxiliary information, we propose a multi-task based bilateral-branch network. On the issue of how to integrate multi-task model and bilateral-branch network, because one advantage of multi-task learning is using more data or information to learn better representations, we propose a solution of integrating the networks of the auxiliary tasks with the representation learning branch of the bilateral- branch network. The experimental results show that our model outperforms other models used for citation intent classification.","PeriodicalId":367038,"journal":{"name":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/imcom53663.2022.9721746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identifying the purpose of citations plays an important role in evaluating the impact of the literature. There is a data imbalanced problem on different types of citation intents which harms the performance of the classification model. To alleviate this problem, We adapt the bilateral-branch network proposed in the computer vision domain to our topic in the natural language processing domain by constructing shared and non-shared encoder layers using pre-trained language model and word attention layer respectively. In addition, to learn rich representations by leveraging the auxiliary information, we propose a multi-task based bilateral-branch network. On the issue of how to integrate multi-task model and bilateral-branch network, because one advantage of multi-task learning is using more data or information to learn better representations, we propose a solution of integrating the networks of the auxiliary tasks with the representation learning branch of the bilateral- branch network. The experimental results show that our model outperforms other models used for citation intent classification.
基于多任务的不平衡引文意图分类双边分支网络
确定引文的目的对评价文献的影响起着重要的作用。不同类型的被引意图存在数据不平衡问题,影响了分类模型的性能。为了解决这一问题,我们将在计算机视觉领域提出的双边分支网络应用于自然语言处理领域,分别使用预训练的语言模型和词注意层构建共享和非共享编码器层。此外,为了利用辅助信息学习丰富的表征,我们提出了一个基于多任务的双边分支网络。在如何将多任务模型与双边分支网络集成的问题上,由于多任务学习的一个优势是使用更多的数据或信息来学习更好的表示,我们提出了一种将辅助任务网络与双边分支网络的表示学习分支集成的解决方案。实验结果表明,该模型优于其他用于引文意图分类的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信