The Hand Mouse: GMM hand-color classification and mean shift tracking

T. Kurata, T. Okuma, M. Kourogi, K. Sakaue
{"title":"The Hand Mouse: GMM hand-color classification and mean shift tracking","authors":"T. Kurata, T. Okuma, M. Kourogi, K. Sakaue","doi":"10.1109/RATFG.2001.938920","DOIUrl":null,"url":null,"abstract":"This paper describes an algorithm to detect and track a hand in each image taken by a wearable camera. We primarily use color information, however, instead of pre-defined skin-color models, we dynamically construct hand- and background-color models by using a Gaussian mixture model (GMM) to approximate the color histogram. Not only to obtain the estimated mean of hand color necessary for the restricted EM algorithm that estimates the GMM but also to classify hand pixels based on the Bayes decision theory, we use a spatial probability distribution of hand pixels. Since the static distribution is inadequate for the hand-tracking stage, we translate the distribution with the hand motion based on the mean shift algorithm. Using the proposed method, we implemented the Hand Mouse that uses the wearer's hand as a pointing device, on our wearable vision system.","PeriodicalId":355094,"journal":{"name":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RATFG.2001.938920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

This paper describes an algorithm to detect and track a hand in each image taken by a wearable camera. We primarily use color information, however, instead of pre-defined skin-color models, we dynamically construct hand- and background-color models by using a Gaussian mixture model (GMM) to approximate the color histogram. Not only to obtain the estimated mean of hand color necessary for the restricted EM algorithm that estimates the GMM but also to classify hand pixels based on the Bayes decision theory, we use a spatial probability distribution of hand pixels. Since the static distribution is inadequate for the hand-tracking stage, we translate the distribution with the hand motion based on the mean shift algorithm. Using the proposed method, we implemented the Hand Mouse that uses the wearer's hand as a pointing device, on our wearable vision system.
手鼠标:GMM手颜色分类和平均移位跟踪
本文描述了一种检测和跟踪可穿戴相机拍摄的每张图像中的手的算法。我们主要使用颜色信息,但是,我们使用高斯混合模型(GMM)来近似颜色直方图,动态构建手色和背景色模型,而不是预定义的肤色模型。为了获得估计GMM的受限EM算法所需的手部颜色估计均值,并基于贝叶斯决策理论对手部像素进行分类,我们使用了手部像素的空间概率分布。由于静态分布不适用于手部跟踪阶段,我们基于均值移位算法将静态分布与手部运动进行平移。利用提出的方法,我们在我们的可穿戴视觉系统上实现了使用佩戴者的手作为指向设备的手鼠标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信