Learning Bayesian Network structures using Multiple Offspring Sampling

E. B. D. Santos, N. Ebecken, Estevam Hruschka
{"title":"Learning Bayesian Network structures using Multiple Offspring Sampling","authors":"E. B. D. Santos, N. Ebecken, Estevam Hruschka","doi":"10.1109/ISDA.2011.6121682","DOIUrl":null,"url":null,"abstract":"Variable Ordering (VO) plays an important role when inducing Bayesian Networks (BNs). Previous works in the literature suggest that it is worth pursuing the use of evolutionary strategies for identifying a suitable VO, when learning a Bayesian Network structure from data. This paper proposes a hybrid adaptive algorithm named VOMOS (Variable Ordering Multiple Offspring Sampling) where the new individuals are created using a set of recombination operators (crossover and mutation operators). Experiments performed in datasets revealed that the VOMOS approach is promising and tends to generate consistent and representative BNs.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Variable Ordering (VO) plays an important role when inducing Bayesian Networks (BNs). Previous works in the literature suggest that it is worth pursuing the use of evolutionary strategies for identifying a suitable VO, when learning a Bayesian Network structure from data. This paper proposes a hybrid adaptive algorithm named VOMOS (Variable Ordering Multiple Offspring Sampling) where the new individuals are created using a set of recombination operators (crossover and mutation operators). Experiments performed in datasets revealed that the VOMOS approach is promising and tends to generate consistent and representative BNs.
使用多子代抽样学习贝叶斯网络结构
在引入贝叶斯网络时,变量排序(VO)起着重要的作用。以前的文献表明,当从数据中学习贝叶斯网络结构时,值得追求使用进化策略来识别合适的VO。本文提出了一种混合自适应算法,该算法使用一组重组算子(交叉和突变算子)创建新个体。在数据集上进行的实验表明,VOMOS方法很有前途,并且倾向于生成一致且具有代表性的bn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信