CIDAN: Computing in DRAM with Artificial Neurons

G. Singh, Ankit Wagle, S. Vrudhula, S. Khatri
{"title":"CIDAN: Computing in DRAM with Artificial Neurons","authors":"G. Singh, Ankit Wagle, S. Vrudhula, S. Khatri","doi":"10.1109/ICCD53106.2021.00062","DOIUrl":null,"url":null,"abstract":"Numerous applications such as graph processing, cryptography, databases, bioinformatics, etc., involve the repeated evaluation of Boolean functions on large bit vectors. In-memory architectures which perform processing in memory (PIM) are tailored for such applications. This paper describes a different architecture for in-memory computation called CIDAN, that achieves a 3X improvement in performance and a 2X improvement in energy for a representative set of algorithms over the state-of-the-art in-memory architectures. CIDAN uses a new basic processing element called a TLPE, which comprises a threshold logic gate (TLG) (a.k.a artificial neuron or perceptron). The implementation of a TLG within a TLPE is equivalent to a multi-input, edge-triggered flipflop that computes a subset of threshold functions of its inputs. The specific threshold function is selected on each cycle by enabling/disabling a subset of the weights associated with the threshold function, by using logic signals. In addition to the TLG, a TLPE realizes some non-threshold functions by a sequence of TLG evaluations. An equivalent CMOS implementation of a TLPE requires a substantially higher area and power. CIDAN has an array of TLPE(s) that is integrated with a DRAM, to allow fast evaluation of any one of its set of functions on large bit vectors. Results of running several common in-memory applications in graph processing and cryptography are presented.","PeriodicalId":154014,"journal":{"name":"2021 IEEE 39th International Conference on Computer Design (ICCD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 39th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD53106.2021.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Numerous applications such as graph processing, cryptography, databases, bioinformatics, etc., involve the repeated evaluation of Boolean functions on large bit vectors. In-memory architectures which perform processing in memory (PIM) are tailored for such applications. This paper describes a different architecture for in-memory computation called CIDAN, that achieves a 3X improvement in performance and a 2X improvement in energy for a representative set of algorithms over the state-of-the-art in-memory architectures. CIDAN uses a new basic processing element called a TLPE, which comprises a threshold logic gate (TLG) (a.k.a artificial neuron or perceptron). The implementation of a TLG within a TLPE is equivalent to a multi-input, edge-triggered flipflop that computes a subset of threshold functions of its inputs. The specific threshold function is selected on each cycle by enabling/disabling a subset of the weights associated with the threshold function, by using logic signals. In addition to the TLG, a TLPE realizes some non-threshold functions by a sequence of TLG evaluations. An equivalent CMOS implementation of a TLPE requires a substantially higher area and power. CIDAN has an array of TLPE(s) that is integrated with a DRAM, to allow fast evaluation of any one of its set of functions on large bit vectors. Results of running several common in-memory applications in graph processing and cryptography are presented.
基于人工神经元的DRAM计算
许多应用,如图形处理、密码学、数据库、生物信息学等,都涉及对大比特向量的布尔函数的重复求值。执行内存处理(PIM)的内存内架构是为此类应用程序量身定制的。本文描述了一种不同的内存计算架构,称为CIDAN,与最先进的内存架构相比,它在性能上提高了3倍,在能量上提高了2倍。CIDAN使用了一种叫做TLPE的新的基本处理元素,它包括一个阈值逻辑门(TLG)(又名人工神经元或感知器)。在TLPE中实现TLG相当于计算其输入的阈值函数子集的多输入、边触发触发器。通过使用逻辑信号,通过启用/禁用与阈值功能相关的权重子集,在每个周期中选择特定的阈值功能。除了TLG之外,TLPE还通过一系列TLG求值来实现一些非阈值函数。等效的TLPE CMOS实现需要高得多的面积和功率。CIDAN有一个与DRAM集成的TLPE阵列,允许在大比特向量上快速评估其功能集中的任何一个。给出了在图形处理和密码学中运行几个常见内存应用程序的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信